Ambienti virtuali per la riabilitazione spazio temporale in presenza di disabilità cognitiva

Relatore: Prof. Licia Sbattella
Correlatore: Ing. Antonio Bianchi

Tesi di Laurea di:
Lorenzo Palpella
Matr. 640726

Anno accademico 2003-2004
Ai miei genitori,
...e a chi,
in questi anni,
ha creduto in me.
Indice

1 INTRODUZIONE .. 8

2 IL CONTESTO DI RICERCA ... 13
 2.1 ASSISTIVE TECHNOLOGY .. 14
 2.2 CONDIZIONI DI SALUTE E DISABILITÀ COINVOLTE 14
 2.2.1 Conseguenze e problematiche a seguito di un trauma cranico. 16
 2.3 IL SOFTWARE DIDATTICO RIVOLTO AI PROBLEMI DI NATURA COGNITIVA 17
 2.3.1 Analisi visiva e strategie cognitive 17
 2.3.2 Attenzione e concentrazione .. 18
 2.3.3 Considerazioni sui prodotti .. 18
 2.4 LA SIMULAZIONE VIRTUALE NELL’AMBITO DELLA RIABILITAZIONE 19
 2.5 GLI AMBIENTI VIRTUALI ... 19
 2.5.1 Breve storia e sviluppi .. 20
 2.6 AMBIENTE VIRTUALE E APPRENDIMENTO 21
 2.7 L’UTILIZZO DI AMBIENTI VIRTUALI IN AMBITO PSICOTERAPEUTICO 22
 2.7.1 Agorafobia e acrofobia ... 22
 2.7.2 Virtual reality exposure .. 23
 2.8 GLI AMBIENTI VIRTUALI PER LA RIABILITAZIONE DA DISTURBI DI CARATTERE COGNITIVO ... 24
 2.8.1 The Virtual Classroom ©... 25
 2.8.2 AVIRC: Integrated Virtual Environment for cognitive Rehabilitation ... 26
 2.8.3 V-Store .. 28
 2.9 CONSIDERAZIONI .. 29

3 LA PROGETTAZIONE DI AMBIENTI VIRTUALI PER LA RIABILITAZIONE COGNITIVA... 30
 3.1 PERCHÉ UTILIZZARE LA REALTÀ VIRTUALE IN AMBITO COGNITIVO 30
 3.2 IMMERSIONE E PRESENZA... 32
 3.2.1 Classificazione dei sistemi immersivi 33
 3.3 PERIFERICHE IMMERSIVE ... 34
 3.3.1 Il guanto P5Glove .. 36
 3.4 INTERATTIVITÀ DEL SISTEMA ... 39
 3.4.1 Complessità e interazione .. 40
 3.5 GRADO DI REALISMO DEL SISTEMA .. 40
 3.6 FEEDBACK DEL SISTEMA .. 42
 3.7 IL SUONO 3D .. 42
 3.8 ASPETTO DELL’AMBIENTE SIMULATO ... 43
 3.8.1 Astrazione ed aspetto ludico ... 43
 3.8.2 Un ambiente sicuro .. 44
 3.9 UNO SGUARDO D’INSIEME .. 45
 3.10 UNO STRUMENTO PER IL TUTORING ... 46
 3.10.1 Personalizzazione ... 47
 3.10.2 Graduazione degli scenari .. 47
 3.10.3 Ripetitività ... 47
 3.10.4 Risultati ... 47

4 SCENARI E PERCORSI RIABILITATIVI ... 49
 4.1 APPROCCIO RESTORATIVO O FUNZIONALE 50
4.2 Analisi dei modelli attentivi .. 51
 4.2.1 Attenzione automatica/volontaria ... 52
 4.2.2 Attenzione selettiva o multicanalizzata 52
 4.2.3 Attenzione momentanea/sostenuta .. 54
 4.2.4 Attenzione alternata ... 54

4.3 Le funzioni esecutive, la memoria, i disturbi e il tempo negli esercizi 55
 4.3.1 Funzioni esecutive ... 55
 4.3.2 Il tempo .. 56
 4.3.3 La memoria ... 57
 4.3.4 Aggiunta di elementi di disturbo.. 58

4.4 Gli esercizi .. 59
 4.4.1 Attenzione selettiva o focalizzata in assenza di interferenze ... 59
 4.4.2 Attenzione sostenuta ... 60
 4.4.3 Attenzione alternata ... 61
 4.4.4 Attenzione multicanalizzata ... 62

4.5 Alcune considerazioni .. 64

5 PALESTRA VIRTUALE: IL SISTEMA REALIZZATO 65

5.1 Il progetto Reverie ... 65
 5.1.1 Rêveire ... 65
 5.1.2 Scopo del progetto ... 66

5.2 L’applicativo palestra virtuale .. 68

5.3 Architettura .. 69

5.4 Il player ... 69
 5.4.1 L’interfaccia ... 72
 5.4.2 L’output informativo ... 76
 5.4.3 La scena .. 76
 5.4.4 La telecamera ... 76
 5.4.5 L’avatar ... 77
 5.4.6 Il movimento sulla scena dell’avatar 77
 5.4.7 Gestione delle interazioni .. 79
 5.4.8 Le proprietà degli oggetti .. 80
 5.4.9 Gli obiettivi ... 82
 5.4.10 Modalità controllo obiettivi ... 84
 5.4.11 La descrizione dello scenario .. 85
 5.4.12 Picking e spostamento degli oggetti 86
 5.4.13 I disturbi ambientali ... 86

5.5 Produzione dei risultati ... 87
 5.5.1 I colori e il loro significato .. 89
 5.5.2 Misurazione del tempo ... 90

5.6 L’editor ... 92
 5.6.1 caricare uno scenario ... 94
 5.6.2 Creazione della scena .. 94
 5.6.3 Aggiungere suoni ... 99
 5.6.4 Inserire l’avatar e salvare la posizione iniziale 101
 5.6.5 Inserire la posizione iniziale della telecamera 101
 5.6.6 Le proprietà di un oggetto ... 101
 5.6.7 Inserire degli obiettivi di interazione 102
 5.6.8 Inserire un percorso .. 103
 5.6.9 Inserire la descrizione di uno scenario 105
 5.6.10 Creare scenari di riconoscimento sonoro 105
 5.6.11 Creare degli obiettivi di posizione 106
 5.6.12 Test dello scenario ... 107

5.7 Il framework ... 108
5.7.1 L'astrazione dei suoni e della grafica 3d .. 109
5.7.2 Framework, entità modulare ... 110
5.7.3 Engine ... 112
5.7.4 SceneManager ... 113
5.7.5 GUIManager ... 114
5.7.6 InputManager ... 115
5.7.7 SoundManager .. 117
5.8 Descrizione di un mondo 3d .. 119
5.8.1 Formato dei dati in ingresso ... 119
5.8.2 Descrizione dei suoni ... 123
5.8.3 Descrizione degli obiettivi .. 124
5.9 Gestione del log .. 127

6 IL PROTOCOLLO VALUTATIVO .. 129
6.1 Gli scenari ... 130
6.1.1 Scenario 1: La stanza degli strumenti .. 130
6.1.2 Scenario 2: È tempo di raccolta ... 132
6.1.3 Scenario 3: Aiuta le paperette ... 133
6.1.4 Scenario 4: Il Pinguino affamato ... 135
6.2 Richieste Hardware .. 136
6.3 Modalità dei test ... 137
6.4 Il protocollo valutativo ... 138
6.4.1 Valutazione degli aspetti psicopedagogici 138
6.4.2 Valutazione degli aspetti tecnici ... 140

7 ANALISI DEI RISULTATI .. 142
7.1 Considerazioni generali .. 142
7.2 Analisi dei punti del protocollo .. 144
7.2.1 Valutazione degli aspetti psicopedagogici 144
7.2.2 Valutazione degli aspetti tecnici ... 150

8 CONCLUSIONI E SVILUPPI FUTURI .. 159
8.1 Evoluzioni e spunti di futura ricerca .. 160

9 BIBLIOGRAFIA E SITOGRAFIA ... 162
9.1 Bibliografia per argomento ... 162
9.1.1 Riabilitazione delle funzioni attenzive e cognitive generali 162
9.1.2 Ambienti virtuali e definizioni ... 163
9.1.3 Ambienti virtuali a supporto della riabilitazione 164
9.2 Sitografia ... 166

Indice delle figure

FIGURA 2-1 Analisi visiva e strategie cognitive: ESEMPIO DI Esercizio simbolico. .. 17
FIGURA 2-2 Attenzione e concentrazione: ESEMPIO DI UNO DEI TEST PROPOSTI. . 18
FIGURA 2-3 Acrofobia: Simulazione di un ascensore panoramico 23
FIGURA 2-4 Acrofobia: Simulazione di una terrazza con vista sul vuoto 23
FIGURA 2-5 Virtual Reality Exposure: Simulazione di una situazione stressante, parlare in pubblico ... 24
FIGURA 2-6 VIRTUAL ClassRoom: L’aula degli esercizi, nella versione commerciale. ... 25
FIGURA 2-7 VIRTUAL ClassRoom: L’aula degli esercizi, nella versione prototipale. .. 26
FIGURA 2-8 AVIRC: Visione parziale della città, che costituisce l’ambiente interattivo. .. 27
FIGURA 2-9 V-STORE: UN’immagine del negozio di frutta, il cursore permette di prendere la frutta e posizionarla nella cassa. 28
FIGURA 3-1 IL guanto P5Glove, e la torretta ricevente. 36
FIGURA 3-2 CLASSIFICAZIONE DEI MEDIA IN TERMINI DI REALISMO E INTERATTIVITÀ DI JONATHAN STEUER 41
FIGURA 5-1 PALESTRA Virtuale: Architettura, utenti, componenti e modelli dei dati prodotti e acquisiti. 69
FIGURA 5-2 PLAYER: Schema dei componenti e dei dati coinvolti durante l’esecuzione. ... 72
FIGURA 5-3 PLAYER: L’interfaccia, le icone e il cursore. 73
FIGURA 5-4 EDITOR: Schema dei componenti, dei dati e delle funzioni principali, coinvolute durante la modifica di uno scenario. 93
FIGURA 5-5 EDITOR: La finestra di selezione degli scenari da modificare. 94
FIGURA 5-6 EDITOR: L’interfaccia, le icone e il cursore. 95
FIGURA 5-7 EDITOR: Finestra di selezione standard, stile windows, dei modelli 3DStudio. .. 96
FIGURA 5-8 EDITOR: Finestra definizione proprietà sonore, è presente una barra per il volume e dei checkbox per la definizione delle proprietà. .. 100
FIGURA 5-9 EDITOR: Sezione di finestra obiettivi, selezione delle proprietà oggetto. ... 102
FIGURA 5-10 EDITOR: Sezione di finestra obiettivi, definizione dell’obiettivo di interazione e della descrizione associata. 102
FIGURA 5-11 EDITOR: Sezione di finestra obiettivi, definizione del percorso, inserimento tappa e descrizione associata. 104
FIGURA 5-12 EDITOR: Sezione di finestra obiettivi, inserimento/eliminazione dell’obiettivo di posizione, del range, della descrizione associata. ... 106
FIGURA 5-13 FRAMEWORK: rappresentazione dell’astrazione dei metodi messi a disposizione dello sviluppatore 109
FIGURA 5-14 FRAMEWORK: Engine, nucleo del framework, processa gli input e produce l’output visivo e sonoro. 110
FIGURA 5-15 FRAMEWORK: Diagramma delle classi dei quattro moduli principali, gestiti dal framework. 111
FIGURA 5-16 PLAYER: Use case, delle periferiche di input attuali e previste. 116
FIGURA 5-17 PLAYER/EDITOR: Schema acquisizione dati a partire dalla cartella dello scenario, il loader e i moduli coinvolti. 121
FIGURA 5-18 PLAYER: Sequence diagram, apertura e log delle informazioni degli scenari. .. 127
FIGURA 6-1 Scenario1: Schermata iniziale, viene mostrata la descrizione dello scenario; gli oggetti della scena sono ben visibili. 130
FIGURA 6-2 Scenario2: L’utente è pronto per raccogliere il frutto, la descrizione provvede a ricordarglielo. 132
FIGURA 6-3 Scenario3: L’utente ha trovato una paperetta ed è pronto per spostarla. ... 133
FIGURA 6-4 Scenario4: L’Avatar è in fase di caricamento delle animazioni, la scena è ben visibile. ... 135
FIGURA 7-1 Grafico 1: Comprensione delle modalità di interazione 144
FIGURA 7-2 Grafico 2: Comprensione dell’obiettivo dell’esercizio 145
FIGURA 7-3 Grafico 3: Modalità di interazione, i tempi di esplorazione e di interazione finalizzata. ...146
FIGURA 7-4 Grafico 4A: Presenza del tutor, nella sua funzione assistiva.147
FIGURA 7-5 Grafico 4B: Presenza del tutor, nella sua funzione collaborativa. ..147
FIGURA 7-6 Grafico 5: Risposta ad eventi inattesi, errati.148
FIGURA 7-7 Grafico 6A: Raggiungimento di obiettivi parziali.149
FIGURA 7-8 Grafico 6B: Raggiungimento obiettivo complessivo.149
FIGURA 7-9 Grafico 7A: Gradimento dell’interfaccia e delle modalità selezione opzioni. ..150
FIGURA 7-10 Grafico 7B: Semplicità d’utilizzo dell’interfaccia e delle modalità selezione opzioni. ...151
FIGURA 7-11 Grafico 8A: Gradimento delle funzioni di spostamento dell’avatar. ...151
FIGURA 7-12 grafico 8B: Semplicità delle funzioni di spostamento dell’avatar. ...152
FIGURA 7-13 Grafico 8C: Gradimento delle animazioni dell’avatar.152
FIGURA 7-14 Grafico 8D: Gradimento del suono associato al movimento dell’avatar. ...153
FIGURA 7-15 Grafico 9A: Gradimento delle funzioni di prospettiva dell’avatar. ...154
FIGURA 7-16 Grafico 9B: Semplicità di utilizzo delle funzioni di prospettiva dell’avatar. ...154
FIGURA 7-17 Grafico 10A: Gradimento dei suoni associati agli oggetti della scena. ...155
FIGURA 7-18 Grafico 10B: Semplicità d’interazione con i suoni associati agli oggetti della scena. ..155
FIGURA 7-19 Grafico 10C: Gradimento dell’interazione con l’oggetto preposto alla spiegazione dell’esercizio. ...156
FIGURA 7-20 Grafico riassuntivo: Somma dei risultati delle singole domande. ...157
1 Introduzione

Ambito di ricerca
Il lavoro si colloca nell’ambito dell’Assistive Technology, in particolare per quanto riguarda l’uso di strumenti informatici e multimediali a supporto della disabilità cognitiva e psichica. Numerosi sono i software tradizionali, non tridimensionali, proposti allo scopo riabilitativo, non solo cognitivo, mentre è esiguo il numero degli ambienti virtuali rivolti alla riabilitazione cognitiva; la tesi si inserisce in quest’ultimo contesto.

Scopo
Scopo di questo lavoro è la progettazione e realizzazione di un applicativo che si colloca nell’ambito della riabilitazione cognitiva attraverso l’uso di ambienti tridimensionali, sonori ed interattivi.

La progettazione
Un’attenta analisi delle caratteristiche degli ambienti virtuali adattate al contesto riabilitativo ha permesso la realizzazione dell’applicativo Palestra Virtuale; si riportano brevemente le principali conclusioni:

Gli ambienti virtuali sono caratterizzati dal senso di presenza percepito dall’utente. Idealmente aumentando il grado di immersione, la qualità grafica e l’interattività del sistema si dovrebbe ottenere un maggior grado di presenza; tuttavia nel particolare contesto cognitivo e riabilitativo è necessario considerare altri fattori che si rivelano essere ugualmente o maggiormente importanti: la possibilità di usufruire di un sistema altamente interattivo e nello stesso tempo semplice da usare, di raggiungere un buon livello di astrazione visiva unita ad una componente ludica degli ambienti affinché possano essere graditi ed essere veicolo motivazionale. L’applicativo inoltre deve essere uno strumento efficace anche per il tutor: deve permettere di valutare e revisionare i risultati, fornendo
Introduzione
dati utili, ma senza esprimere giudizi. Il tutor deve poter costruire percorsi su misura, che meglio si adattino alle esigenze e alla natura dei problemi dell’utente; a tale proposito sono presentati modelli di possibili percorsi, da eseguire attraverso la creazione di scenari. Gli scenari realizzati a carattere esemplificativo sviluppano contesti che possono essere di supporto per verificare e stimolare le dinamiche attentive, le capacità mnemoniche, le funzioni esecutive, di problem solving, di pianificazione e l’esorlazione temporale e spaziale degli ambienti.

Realizzazione e implementazione
L’applicativo si compone di due parti, un player ed un editor. Il primo è uno strumento che permette di interagire con gli scenari proposti, è dotato di un’interfaccia intuitiva, semplice, dalla grafica curata e adatta al contesto; permette l’interazione tramite movimento dell’avatar e attraverso un cursore animato. Particolare importanza è stata assegnata agli aspetti sonori, attraverso l’utilizzo del suono tridimensionale. Il secondo, l’editor, permette al tutor di modificare e arricchire gli scenari presenti, oltre a fornire la possibilità di crearne di nuovi. L’applicativo integra, per la gestione grafica e del suono, un framework, realizzato per essere base comune degli applicativi nell’ambito del progetto REVERie del laboratorio Arcslab del D.E.I., e riferimento per altri progetti analoghi; è dotato di una struttura modulare, mette a disposizione funzioni di alto livello per lo sviluppatore, ed è aperto a future espansioni. La scena è creata a partire dalla descrizione formale in formato CML, per garantirne la condivisione e la compatibilità.

L’autore di questa tesi ha progettato e sviluppato l’applicativo, nei suoi due componenti e negli scenari di test; ha collaborato allo sviluppo e al testing del framework, e in particolare al suo interno ha realizzato il modulo per la gestione del suono tridimensionale.

Sperimentazione e validazione
Gli scenari creati, sono stati provati e valutati, presso il centro di riabilitazione Esagramma, secondo il protocollo valutativo fornito.
Introduzione

Il protocollo è stato studiato per valutare al meglio gli aspetti psicopedagogici e gli aspetti tecnici del sistema. Ai test hanno partecipato diciotto ragazzi/e con disagio cognitivo. I risultati hanno riscontrato gradimento e motivo di interesse.

Sono stati apprezzati sia gli aspetti multimediali: interattività, grafica e sonoro tridimensionale, sia la presenza del log come strumento valutativo; nello stesso tempo si è evidenziata la possibilità di migliorare alcuni aspetti per rendere l’interazione ancora più semplice in modo tale che possa essere affidata totalmente agli utenti, come aggiunta all’interazione combinata tutor e utente.

Caratteristiche innovative

L’unione delle caratteristiche analizzate in fase di progettazione ha permesso di realizzare un prodotto innovativo. Riassumendo le caratteristiche già citate si evidenziano: la possibilità di personalizzazione, di fornire uno strumento accurato di revisione delle sessioni, la possibilità di usufruire di un ambiente tridimensionale, interattivo, dalla grafica accattivante e dal suono tridimensionale. Inoltre l’applicativo integra il framework, che offre allo sviluppatore: astrazione della grafica e dei suoni, modularità, possibilità di espansione in uno dei suoi componenti e di usare una descrizione formale per le scene, comune a progetti dello stesso ambito.

Organizzazione della tesi

La tesi è organizzata in nove capitoli:

Capitolo 2 (Il contesto di ricerca). Delinea il contesto e l’ambito nel quale questo lavoro si colloca. Offre, inoltre, una panoramica sui prodotti o progetti più interessanti realizzati allo scopo riabilitativo cognitivo.
Introduzione

Capitolo 3 (La progettazione di ambienti virtuali per la riabilitazione cognitiva). Sono analizzate le caratteristiche degli ambienti virtuali inserite nel contesto riabilitativo, le scelte effettuate e le motivazioni che hanno portato all’implementazione dell’applicativo.

Capitolo 4 (Scenari e percorsi riabilitativi). Sono presentati parte dei percorsi riabilitativi, realizzabili tramite l’applicativo, inseriti nel contesto delle dinamiche attentive, mnemoniche, delle funzioni esecutive e di pianificazione.

Capitolo 5 (Palestra Virtuale: il sistema realizzato). Introduce le caratteristiche concettuali del sistema, l’architettura, le tecnologie utilizzate e le caratteristiche del framework in uso.

Capitolo 6 (Il protocollo valutativo). Viene mostrato il protocollo valutativo e gli scenari creati per le sessioni di test.

Capitolo 7 (Analisi dei risultati). Vengono analizzati i risultati sia globalmente, sia nei singoli punti del protocollo valutativo.

Capitolo 8 (Conclusioni e sviluppi futuri). Analizza i risultati del lavoro ottenuti e profila le possibili evoluzioni del lavoro presentato, sia relativamente al solo Palestra Virtuale, sia alle evoluzioni nell’ambito del progetto REVErie che possono essere integrate e fornire motivo di sviluppo.

Capitolo 9 (Bibliografia e Sitografia). Sono elencati, divisi per argomento, tutti i riferimenti al materiale, rilevante, consultato e citato durante lo svolgimento di questo lavoro.

Il progetto REVErie

Questo lavoro è inserito nell’ambito del progetto REVErie, presso il laboratorio ArcsLab del dipartimento di elettronica e informazione del politecnico di Milano. Lo scopo è di approfondire la metafora dell’esplorazione topologica 3d applicata ai tre contesti: di narrazione, di assunzione di ruolo e di esercitazione visuospatiale. L’obiettivo è di realizzare attraverso un framework comune tre applicativi distinti. Il primo, Palestra Virtuale, è argomento di questo lavoro, il secondo,
Storytelling, nel quale viene utilizzata la tradizionale tecnica della narrazione della fiaba, in un contesto tridimensionale, dove è possibile, grazie all’interazione, modificare il corso della storia. Il terzo “Gioco di Ruolo” pone l’accento sul piano cooperativo, proponendo un mondo interattivo e popolato da più utenti in contemporanea, utilizzando un architettura di rete.
Il contesto di ricerca

La sinergia uomo-macchina è in continua crescita ed evoluzione, basta guardarcì intorno per capire come le tecnologie informatiche sono entrate nella nostra vita, migliorandola e rendendola spesso più facile. La maggior parte delle innovazioni permette alle persone di raggiungere un livello di vita qualitativamente superiore; se si pensa ad una persona disabile e cosa possa significare “migliorare il livello qualitativo” ci si rende conto che spesso vuol dire rendere possibile quello che prima costituiva una barriera o un impedimento, si parla in questo senso di Assistive Technology, per qualunque tipo di tecnologia a supporto del disabile, non solo informatica. Fino a non molto tempo fa il mondo della disabilità e quello dell'informatica erano totalmente estranei l'uno all'altro, il primo era materia della medicina, mentre il secondo era elemento di studio tecnologico; grazie proprio al progresso della tecnologia è oggi possibile l'accostamento di termini quali disabilità e informatica. La pedagogia, la sociologia e la psicologia hanno preso atto di tale realtà ed hanno cercato di usare le nuove risorse informatiche per aiutare la crescita, l'educazione, la comunicazione e lo sviluppo cognitivo dei disabili e non solo. Non si può affermare che nell’ambito dell'informatica a supporto dei disabili le proposte relative alla riabilitazione cognitiva siano le più numerose, bisogna tenere presente che la difficoltà di definire con precisione la natura dei problemi cognitivi o di apprendimento ha portato la ricerca a produrre maggiore sforzo verso la creazione di strumenti a supporto di persone con difficoltà motorie, visive od uditive; tali prodotti in generale hanno risultati diretti e facilmente misurabili.

Oggetto di questo capitolo è indagare nelle proposte volte alla riabilitazione dei disturbi di carattere cognitivo, in particolare mediante l’uso di ambienti virtuali.
2.1 Assistive Technology

L’ Assistive Technology comprende qualsiasi dispositivo che consenta ad una persona disabile di raggiungere il suo massimo potenziale dal punto di vista educativo, lavorativo, sociale nonché nelle attività di vita giornaliera.

"Per le persone senza disabilità, la tecnologia rende le cose più facili. Per le persone disabili, la tecnologia rende le cose possibili."
(Mary Pat Radabaugh)\(^1\)

Un posto di rilievo nell’ambito dell’Assistive Technology è occupato dall’informatica. In particolare per quanto riguarda l’apprendimento e la riabilitazione, lo sviluppo di software dedicati a persone con difficoltà cognitive sta assumendo sempre più importanza.

2.2 Condizioni di salute e disabilità coinvolte

La condizione di disabilità cognitiva, può essere determinata da cause di varia natura: essere conseguenza di un trauma o una disfunzione cerebrale in alternativa derivare da una sindrome acquisita o congenita ad esempio l’autismo. Al fine di evitare una trattazione eccessiva e senza le competenze necessarie si è deciso di evidenziare il solo trauma cranico a titolo esemplificativo.

Un’epidemia silenziosa, così è stato definito il trauma cranico da George Zitney, presidente dell’International Brain Injury Association

\(^1\)M. P. Radabaugh - Study on the Financing of Assistive Technology Devices of Services for Individuals with Disabilities - A report to the president and the congress of the United State, National Council on Disability, Marzo 1993
Ogni anno si registrano 7.800.000 nuovi casi, di cui 1.500.000 portano alla morte e 2.500.000 procurano disabilità con danni permanenti dati OMS, Organizzazione Mondiale della Sanità. Tra le cause più frequenti: incidenti stradali 70%, sul lavoro 10%, domestici 10%, attività sportive 8% e aggressioni. Si stima che sul pianeta vivono 150 milioni di persone con le conseguenze di un trauma cranico. Ancora più rilevante nel bambino e nel ragazzo poiché il trauma cranico interviene in una fase molto delicata della sua crescita, quella dello sviluppo e dei cambiamenti nelle funzioni fisiche, neurologiche e comportamentali. Queste funzioni, nello specifico le neurologiche e comportamentali, sono collegate allo sviluppo anatomico del cervello, che deve ancora raggiungere la sua completa maturazione. Dunque intervenendo su strutture ancora in formazione può produrre un arresto o una distorsione dello sviluppo delle funzioni motorie, neuro-psicologiche, cognitive e psicologiche. Nonostante le cifre e il quadro siano preoccupanti, il problema è spesso sottovalutato dall’opinione pubblica; i motivi di tale disinteresse sono molteplici, il trauma cranico non è sufficientemente pubblicizzato dai mass-media, non fa “notizia”, e non suscita abbastanza clamore come altre patologie. In aggiunta al problema informativo, bisogna considerare che anche per il campo medico si tratta di una patologia relativamente nuova e solo negli ultimi anni le innovazioni nelle tecniche hanno permesso di decrementare notevolmente la mortalità. Questo ha aperto sempre più nuove strade verso la riabilitazione (molte prevedono l’uso di ausili informatici) di un problema che rimane ancora molto complesso, non solo dal lato medico, ma anche per i suoi molteplici aspetti sociali.

2 International Brain Injury Association, www.internationalbrain.org

3 Organizzazione mondiale sanità, www.who.int/en
2.2.1 Conseguenze e problematiche a seguito di un trauma cranico

Le principali, ma non uniche, conseguenze a seguito di un trauma cranico sono i disturbi di natura mentale e psichica.

- Disturbi attentivi.
- Difficoltà nell’orientamento, spaziale e temporale.
- Disfunzioni nella sfera linguistica, nelle sue componenti: lettura, scrittura e capacità comunicative.
- Deterioramento delle capacità mnemoniche nella memoria sia a breve che a lungo termine.
- Modificazioni della personalità, ansia e perdita del controllo delle emozioni.
- Mancata risposta agli stimoli sensoriali, visivi, sonori e tattili.
- Incapacità di risoluzione di problemi, pianificazione degli obiettivi e attuazione delle strategie.

Bisogna tenere presente che gli aspetti elencati, non si presentano singolarmente, ma vanno a formare un quadro complesso e sfumato, si tratta di una classificazione che può servire solo a delineare il problema, ma non a descriverlo efficacemente. La complessità e molteplicità dei disturbi che caratterizzano la sfera psichica, coinvolgono meccanismi mentali che ancora non sono del tutto chiari.
2.3 Il Software didattico rivolto ai problemi di natura cognitiva

Il numero di software di questa natura è notevole e variegato, eseguendo una breve ricerca e valutazione presso il Servizio di Documentazione sul Software Didattico (SD2)\(^4\), nato da una convenzione fra Ministero della Pubblica Istruzione e Istituto per le Tecnologie Didattiche del CNR, solo nelle sezione software per disabili riferiti ai problemi cognitivi risultano ben duecentoquattordici prodotti riferiti al mercato italiano. Si è ritenuto opportuno presentare solo alcuni prodotti il cui tema comprendesse specificatamente la riabilitazione dei disturbi cognitivi.

2.3.1 Analisi visiva e strategie cognitive

![Figura 2-1 Analisi visiva e strategie cognitive: Esempio di esercizio simbolico.]

E’ un programma della Mac. Edizioni Erickson con finalità educative e riabilitative che intende favorire la soluzione di problemi visivi attraverso strategie cognitive e metacognitive, la strategia adottata è la ricerca della soluzione attraverso procedimenti per prove ed errori.

\(^4\)Servizio di Documentazione sul Software Didattico (SD2) http://sd2.itd.ge.cnr.it/
Gli esercizi richiedono di analizzare visivamente e riprodurre un’immagine ricavata dalla sovrapposizione di diverse forme.

2.3.2 Attenzione e concentrazione

![Figura 2-2 Attenzione e concentrazione: Esempio di uno dei test proposti.](image)

Questo software delle Edizioni Erickson comprende sette test e dodici training e di concentrazione. Sono presentati diversi livelli di difficoltà per essere scelti in base all’età e alle capacità del soggetto. I dati sono memorizzati ed è possibile ricavare una rappresentazione grafica dei progressi.

2.3.3 Considerazioni sui prodotti

Il pregio di questi prodotti, è di avere caratteristiche molto mirate. La mancanza di ambienti tridimensionali e immersivi viene colmata spesso con l’aspetto fortemente ludico e motivante, gli esercizi a tale scopo sono spesso confezionati come giochi.

Il grado di personalizzazione si riferisce in generale al livello di difficoltà, gli ambienti invece sono poco configurabili.
2.4 La simulazione virtuale nell’ambito della riabilitazione

La telemedicina\(^5\) è ormai una realtà nel campo medico, più che una tecnologia è un vero e proprio processo integrativo fra informatica, comunicazione e medicina; un nuovo termine è stato coniato per definire la sua naturale evoluzione, “Cybertherapy\(^6\)”, comunione tra telemedicina, Internet e realtà virtuale. Se da un lato Internet e in parte la telemedicina hanno raggiunto un buon grado di maturazione, la simulazione di ambienti virtuali presenta ancora rilevanti prospettive e sviluppi\(^7\). Nei primi anni di questa disciplina, un gran numero di ricerche e pubblicazioni hanno mostrato l’efficacia dell’utilizzo della realtà virtuale\(^8\), nella psicoterapia (patologie fobiche, dei problemi alimentari, depressione), nel campo della riabilitazione motoria (paraplegia, parkinson) e in misura minore nella riabilitazione cognitiva. Cercando di stabilire una classificazione in generale si può affermare che si sono aperte due prospettive, la prima prevede di integrare nuove tecnologie nelle terapie tradizionali, la seconda di utilizzare le novità tecnologiche per creare nuove terapie.

2.5 Gli ambienti virtuali

Nel film di fantascienza, The Matrix, l’eroe connesso ad un mondo virtuale, attraverso la mente praticava le arti marziali, guidava la

\(^5\) Telemedicina portale informativo http://www.telemed.org/

\(^6\) Risorse e materiale sulla CyberTherapy http://www.cybertherapy.info/

\(^7\) G. Riva, C. Botella - The future of Cybertherapy Improved options with advanced Technologies - Internet and Virtual Reality as Assessment and Rehabilitation Tools for Clinical Psychology and Neuroscience, Amsterdam, IOS Press, 2004

\(^8\) G. Riva – Application of virtual environment in medicine – Schattauer Gmbh, 2003
moto, evitava proiettili, stando in realtà sempre coricato su una sedia, il tutto attraverso un complesso software di simulazione.

Tralasciando la natura fantastica dell’opera, l’aspetto saliente che permane della realtà virtuale e che accomuna le numerose definizioni, è che permette all’utente di abbandonare, i limiti spazio sensoriali del proprio corpo, ed essere “in un altro mondo”

“La realtà virtuale è un ambiente remoto e costruito artificialmente nel quale un individuo prova un senso di presenza, in seguito all’uso di un mezzo di comunicazione” (Steuer, 1992)

2.5.1 Breve storia e sviluppi

I primi esperimenti risalgono alla seconda metà degli anni Settanta negli Stati Uniti con Myron Krueger sulla "Realtà Artificiale" e con Donald Sutherland sulla stereoscopia. Il vero salto di qualità della avviene nel 1985, quando presso la NASA Scott Fisher istituisce il Virtual Environment Workstation, all’interno nascono i primi progetti e applicazioni nati con lo scopo di istruire i piloti dell’aereo-nautica statunitense. In questo contesto si può notare che sin dal principio la simulazione di ambienti virtuale ha trovato terreno e applicazione in ambito formativo oltre che simulativo. L’ambiente generato permetteva di sperimentare situazioni pericolose, costose o difficilmente ripetibili, senza il rischio di perdite di personale o materiale. Solo qualche anno dopo, nel 1989, Jaron Lanier coniò il termine “Realtà virtuale”, per poi realizzare i primi sistemi da commercializzare indipendentemente. Ultimamente il maggiore sviluppo della realtà virtuale è conseguenza di due fattori trainanti, in primo luogo lo sviluppo di tecnologie e periferiche hardware sempre più performanti, e nello stesso tempo, grazie ad un mercato

Il contesto di ricerca

commercialmente sempre più ampio, di un abbassamento notevole dei costi; un sistema desktop in grado di supportare egregiamente grafica 3d è ormai alla portata di molti, infine anche l’offerta di prodotti dedicati: guanti virtuali, visori e periferiche di force feedback è aumentata. L’industria dell’entertainment, probabilmente, ha favorito in maggior parte questo sviluppo, essendo attirata dal crescente mercato dei videogiochi a tre dimensioni. Nonostante l’attenzione posta dall’industria per la maggior parte all’aspetto prettamente commerciale, l’utilizzo degli ambienti virtuali per lo scopo educativo è in continuo sviluppo e offre sempre più interessanti prospettive in molti ambiti, da quello prettamente scolastico, al campo medico, e in generale in tutti gli ambiti ove è possibile simulare un sottoinsieme della realtà.

2.6 Ambiente virtuale e apprendimento

Il processo d’apprendimento è un’attività molto complessa, influenzata da numerosi elementi. Una visione comune sottolinea che “consiste nell’acquisizione di nuove abilità o conoscenze mediante esperienze”. Questa definizione indica come l’apprendimento è il risultato diretto di un’esperienza che avviene ad esempio, esplorando la realtà circostante o intervenendo su di essa attraverso la nostra azione e osservando gli effetti prodotti; è il tipo di apprendimento più naturale per l’uomo, è quello usato dal bambino, quando muovendo i primi passi esplora il mondo circostante.

Supportano questa tesi le teorie del costruttivismo10, nelle quali si sostiene che gli studenti apprendano al meglio, quando possono interagire direttamente con l’oggetto della conoscenza piuttosto che

10 S. Papert - Situating Constructionism, in Constructionism, Eds. Norwood, 1991
da fonti esterne, come un libro di testo. Gli ambienti virtuali, insieme ai videogiochi, costituiscono uno dei modi che possono consentire di realizzare un apprendimento basato sull’esperienza, sull’azione, dove si impara facendo, manipolando direttamente gli oggetti e in particolare nel bambino facendo leva sulla sua naturale voglia di giocare.

2.7 L’utilizzo di ambienti virtuali in ambito psicoterapeutico

I primi studi e applicazioni di ambienti virtuali in ambito terapeutico si sono indirizzati verso il trattamento degli stati fobici. La logica di base sta nel proporre al soggetto la situazione ansiosea facendogli decidere a quale grado di intensità vivere tale esperienza. Si ricrea in un ambiente controllato una situazione che in condizioni reali genererebbe angoscia e perdita di controllo, è proprio il timore di affrontare nella realtà la causa dei propri disagi che diventa spesso un limite insormontabile per molti pazienti. Grazie all’utilizzo dell’ambiente tridimensionale l’utente è in grado di affrontare situazioni particolarmente stressanti in tutta sicurezza.

I numerosi test effettuati hanno evidenziato ottimi risultati; l’utilizzo degli ambienti simulati per questo scopo rappresenta uno dei successi della realtà virtuale in campo riabilitativo.

2.7.1 Agorafobia e acrofobia

Virtual worlds in treating agoraphobia and acrophobia\(^{11}\), è uno studio relativo al trattamento delle fobie, in particolare dell’agorafobia\(^{12}\) e

\(^{11}\) V. Laky, C. S. Lányi - Using virtual reality in psychology (Virtual worlds in treating agoraphobia and acrophobia) – AAATE Conference paper, 2003

\(^{12}\) Agorafobia: Paura morbosa degli spazi aperti quali piazze e strade larghe
dell’acrofobia13, la simulazione tridimensionale permette di ricreare gran parte delle fobie ove l’ambiente è la principale causa del disturbo, si pensi alla paura di volare, di guidare, al timore causato dalla presenza di particolari animali14.

\begin{figure}[h]
 \centering
 \includegraphics[width=0.5\textwidth]{Figura2-3.png}
 \caption{Figura 2-3 Acrofobia: Simulazione di un ascensore panoramico.}
\end{figure}

\begin{figure}[h]
 \centering
 \includegraphics[width=0.5\textwidth]{Figura2-4.png}
 \caption{Figura 2-4 Acrofobia: Simulazione di una terrazza con vista sul vuoto}
\end{figure}

\subsection*{2.7.2 \textbf{Virtual reality exposure}}

Persone affette da fobie di carattere sociale, in genere soggette a paura ed angoscia in situazioni ove è presente l’interazione umana, possono trarre benefici da un ambiente simulativo, nello studio \textit{Virtual Reality Exposure in the Treatment of Social Phobia}15, sono

\begin{itemize}
 \item Acrofobia: Timore ossessivo di cadere nel vuoto, che si prova affacciandosi ad un logo elevato
 \item D. Strickland, L. Hodges, M. North, S. Weghorst - Overcoming phobias by virtual Exoposure - Communicatin of ACM Vol 40, Luglio 1997
 \item P. Lègeron, S. Roy, I. Chemin, F. Lauer, P. Nugues, E. Klinger - Virtual Reality Exposure in the Treatment of Social Phobia - Internet and Virtual Reality as
\end{itemize}
state realizzati alcuni scenari che prevedono situazioni particolarmente stressanti, quali parlare in pubblico, essere osservati da altre persone, stare in relativa intimità con persone sconosciute e altre situazioni simili; inoltre a corredo dell’applicativo sono stati aggiunti scenari preparatori e di tutorial. L’utente, grazie all’aiuto del tutor, impara i comportamenti adatti in ogni contesto sociale, con lo scopo di ridurre l’ansia nelle situazioni reali.

Figura 2-5 Virtual Reality Exposure: Simulazione di una situazione stressante, parlare in pubblico.

2.8 Gli ambienti virtuali per la riabilitazione da disturbi di carattere cognitivo

In letteratura sono proposti molti studi che collocano gli ambienti virtuali di questa natura tra gli sviluppi più promettenti e ne mettono in luce le potenzialità, tuttavia il numero di lavori che segue questa strada è abbastanza esiguo se si escludono le trasposizioni dirette di tecniche riabilitative consolidate.

Assessment and Rehabilitation Tools for Clinical Psychology and Neuroscience, Amsterdam, IOS Press, 2004

2.8.1 The Virtual Classroom ©

Il progetto Virtual Classroom\(^{16}\) nato all’interno dell’University of Southern California\(^{17}\), presenta come ambiente una classe scolastica, rappresentandone gli aspetti comuni, quali semplici esercizi scolastici; inoltre sono stati realizzati alcuni effetti per distraere l’attenzione, come il passaggio di un’auto in strada o l’uso di aeroplanini di carta che volano nella classe. Un tipico esercizio consiste nel proporre agli alunni virtuali, seduti di fronte alla maestra e alla lavagna, delle lettere che scorrono sulla lavagna; gli utenti devono rispondere in caso si presenti una sequenza particolare.

Il progetto comprende l’uso di un casco virtuale Virtual Research V8, che tuttavia ha presentato qualche disagio nel suo utilizzo, principalmente di carattere pratico.

Terminata la realizzazione del primo prototipo, sono stati condotti alcuni test prendendo un gruppo di ragazzi dai sei ai dodici anni affetti da disagi attentivi.

Figura 2-6 Virtual ClassRoom: L’aula degli esercizi, nella versione commerciale.

\(^{16}\) A. Rizzo, D. Klimchuk, R. Mitura - The Virtual Classroom: A Virtual Environment for the Assessment of Attention Processes in Children with Attention Deficit Hyperactivity Disorder - University of Southern California, Digital Media Works, 1999

\(^{17}\) University of Southern California http://imsc.usc.edu/
A seguito di risultati positivi, e di un apprezzamento generale del prototipo, il progetto è passato ad una fase commerciale. È stato perciò introdotto un maggiore livello di dettaglio nella scena e di realismo in generale, grazie anche all’utilizzo di altri pacchetti commerciali come una versione modificata dell’Unreal Warfare engine, tratto da un recente e famoso videogioco della Epic Games18.

2.8.2 AVIRC: Integrated Virtual Environment for cognitive Rehabilitation19

Attraverso la simulazione di un unico spazio virtuale, una città, il progetto si concentra sui processi cognitivi quali attenzione e concentrazione, oltre all’allenamento in presenza di tipiche situazioni quotidiane. La scena è costituita da una piazza, da delle case e dai negozi circostanti: una libreria, una chiesa ed un supermercato. L’obiettivo della ricerca è mettere in condizione l’utente di trovarsi nelle tipiche situazioni ambientali della vita comune.

All’interno della scena sono stati introdotte alcune sottosezioni:

18 http://udn.epicgames.com/Main/WebHome - Unreal developer network

Il contesto di ricerca

- Una stanza ove interagire con gli oggetti, radio, lampade e oggetti comuni.
- Stanza dei suoni, interazione con un piano e ripetizione dei suoni.
- Stanza dei giochi contenente libri, giochi e puzzle.
- Nelle strade riconoscimento delle persone che camminano.
- Un telefono pubblico con esercizio di scrittura dei numeri visualizzati in precedenza.

Il prototipo è stato costruito tramite VRML20 (Virtual Reality Modeling Language).

![Figura 2-8 AVIRC: Visione parziale della città, che costituisce l’ambiente interattivo.](image)

20 Documenti, informazioni riguardo VRML http://www.vrmlsite.com/
2.8.3 V-Store21

Nato presso il centro di riabilitazione cognitiva Paolo VI Casalnoceto (AL). L’ambiente generato è un ipotetico negozio di frutta, all’interno sono presenti alcuni oggetti e dei contenitori della frutta. Attraverso delle indicazioni verbali viene assegnato un breve compito, ad esempio riempire il cestino con la frutta collocata negli scaffali, è possibile fissare un tempo limite di esecuzione e nel caso non venga raggiunto, viene ripetuto l’esercizio. Si possono decidere anche il numero massimo di operazioni in modo da selezionare una strategia efficace.

Figura 2-9 V-STORE: Un’immagine del negozio di frutta, il cursore permette di prendere la frutta e posizionarla nella cassa.

Infine gli esercizi da compiere sono stati strutturati in modo da poter ottenere un livello crescente di difficoltà. Sono stati introdotti alcuni elementi di disturbo come: il suono del telefono, una luce tremolante, e il rintocco di una campana.

Alla fine dell’esercizio vengono raccolte informazioni sui tempi e sulla precisione. Presso il centro sono inoltre in fase di sviluppo le seguenti applicazioni a partire dall’architettura del V-Store.

- **Virtual Tower of London** (campo diagnostico riabilitativo) Una versione virtuale del test di Shallice (1982).
- **V-Wcst** Virtual Wisconsin Card Sorting Test (campo diagnostico riabilitativo). Basato sul Card Sorting Test (Heaton & Pendleton, 1981)

Si tratta di arricchire test tradizionali tramite l’ambiente tridimensionale e interattivo.

2.9 Considerazioni

Alla conclusione di una panoramica dei prodotti più interessanti in campo riabilitativo, risulta che gli ambienti virtuali sono già una realtà in molti settori anche riabilitativi, mentre solo molto promettenti nel campo riabilitativo cognitivo. La ragione di tale affermazione è da ricercarsi spesso nella difficoltà a valutare i miglioramenti nella sfera cognitiva, altri parametri e caratteristiche più tecniche quali l’usabilità, il grado di interazione, la personalizzazione, che vedremo nel secondo capitolo, la trasformano in una promessa, perché introducono prospettive nuove e interessanti rispetto alle tecniche tradizionali, ma solo il tempo dirà se si potrà parlare di realtà.
3 La progettazione di ambienti virtuali per la riabilitazione cognitiva

La grande varietà e adattabilità degli applicativi che utilizzano la realtà virtuale portano a domandarsi quali caratteristiche debba avere un applicativo rivolto ai disturbi di carattere cognitivo, inoltre se il prodotto è rivolto a bambini è spesso richiesto che il software sia in grado di motivare e stimolare l'utente. In questo capitolo, nella prima parte vengono analizzate le proprietà generali degli ambienti virtuali, in modo da poterne stabilire l'importanza all'interno del contesto, nella seconda parte vengono analizzate alcune caratteristiche necessarie a fornire uno strumento fruibile e funzionale allo scopo che si pone.

3.1 Perché utilizzare la realtà virtuale in ambito cognitivo

Le tecniche tradizionali di riabilitazione hanno alle loro spalle anni di pratica e di conseguenza anche di risultati efficaci, ma non si può affermare che siano totalmente accessibili; spesso sono richiesti strumenti a supporto del processo riabilitativo particolarmente costosi, si pensi a una palestra ben attrezzata o alla costruzione di un ambiente che simuli quello reale, sono entrambi elementi che hanno un costo economico, richiedono spazio fisico e necessitano di mantenimento. E’ necessario inoltre, per ottenere dei risultati apprezzabili, continuare il cammino riabilitativo per un periodo di tempo spesso lungo, ed inevitabilmente vi è un aumento anche delle spese di gestione.
La combinazione di questi fattori crea una barriera che rende difficile l'accesso alle pratiche terapeutiche ad un gran numero di persone (Costa 2000). Le tecnologie multimediali ed in particolare la realtà virtuale, forniscono un valido strumento per superare tale barriera, si possono creare scene, suoni e oggetti difficilmente reperibili in realtà, altamente personalizzabili, o particolarmente costosi.

Questa opinione e in generale la validità dell’utilizzo della realtà virtuale in ambito riabilitativo è sempre più condivisa; esaminando i risultati di uno studio finalizzati a stilare una graduatoria che mette in risalto il futuro delle tecniche psico-terapeutiche, l’uso degli ambienti virtuali si posiziona al terzo posto, mentre l’uso dei sistemi computerizzati in generale al quinto; la graduatoria si basa su un totale di trentotto tecniche o interventi che hanno le maggiori possibilità e prospettive di sviluppo nei prossimi dieci anni.

Rispetto a quanto emerge dalla graduatoria, la strada percorsa dalle prime applicazioni software in campo riabilitativo cognitivo è stata la via della trasposizione diretta di test neuro-psicologici o tecniche riabilitative tradizionali. Tale approccio sposta i vantaggi a favore del terapista e non del disabile, il primo avrà a disposizione tipicamente la possibilità di effettuare test psicologici o tradizionali esercizi riabilitativi con maggiore velocità, di archiviare i dati, di risparmiare sul materiale e di uniformare i processi, ma guardando la prospettiva dalla parte del disabile, l’efficacia e il grado di coinvolgimento cambiano solo relativamente.

23 G. NorCross, M. Hedges - The face of 2010 A Delphi poll on the future of psychotherapy – Council for the national register of health service providing psychology, 2002
3.2 Immersione e presenza

Il mondo reale per una persona disabile può essere un ambiente ostile che continuamente mette alla prova e rimarca i suoi limiti, il grande vantaggio degli ambienti simulati è quello di offrire un luogo ove le barriere fisiche non sono più presenti, tutti gli attori che vi partecipano possono interpretare un nuovo ruolo sociale indipendente da quello cui provengono. In questi termini, nella possibilità da parte dell’utente di immedesimarsi nel nuovo ambiente, si concentra il valore aggiunto degli ambienti simulati; tale aspetto viene definito come “senso di presenza”, è il sentimento di sentirsi in un mondo che esiste al di fuori di se stesso o secondo un’altra definizione è l’esperienza soggettiva di essere in un posto o ambiente, anche quando si è fisicamente localizzati in un altro luogo (Witmer & Singer, 1998)24.

Il senso di presenza interviene in molte situazioni comuni quali guardare la TV, leggere un libro o telefonare solo per citarne alcune.

Guardare un film stimola il senso di presenza attraverso immagini dettagliate molto simili alla realtà, la narrazione nello stesso tempo coinvolge emotivamente lo spettatore che arriva spesso ad immedesimarsi con i protagonisti della vicenda, tuttavia è una presenza solo sul piano emotivo, non vi è coinvolgimento sensoriale, non si è immersi nello spettacolo.

Per immersione si intende quanto sensorialmente si riesce ad immedesimarsi nell’ambiente simulato, dipende in gran parte dalle caratteristiche tecniche del sistema, si parla di grado di immersione di un ambiente simulato, come parametro qualitativo che influisce sul senso di presenza percepito.

3.2.1 Classificazione dei sistemi immersivi

Poter individuare con precisione il grado d'immersione di un sistema, è un problema non facilmente risolvente, tuttavia in base alle tecnologie utilizzate si possono collocare gli ambienti, in contesti più generali.

- Realtà virtuale immersiva (Immersive Virtual Reality)
- Realtà virtuale in terza persona (Third Person Virtual Reality)
- Realtà virtuale aumentata (Augmented Reality)
- Realtà virtuale non immersiva (Desktop Virtual Reality)

Realtà virtuale immersiva

Prevede che l’utente venga completamente “avvolto” nel mondo virtuale attraverso un particolare equipaggiamento, quali caschi e guanti virtuali, isolandolo dall’ambiente reale circostante.

Realtà virtuale non immersiva

L’interazione utente-ambiente virtuale avviene tramite i normali dispositivi di input ed output con i quali l’utente interagisce normalmente, l’ambiente simulato viene presentato all’utente tramite una rappresentazione tridimensionale su un normale schermo; l’interazione avviene tramite tastiera, mouse o joystick.

Realtà virtuale in terza persona

In questo caso l’utente viene percepito dal computer attraverso un complesso sistema di telecamere la sua azione nello spazio viene
modellizzata all'interno della macchina attraverso appositi algoritmi. L'utente non entra nella simulazione, ma si vede all'interno di essa attraverso gli schermi del simulatore.

Realtà virtuale aumentata

Nella realtà virtuale aumentata l’uso di particolari sensori ha lo scopo di aumentare e aggiungere informazioni virtuali ad uno o più sensi, in letteratura sono presenti in maggior numero studi e progetti il cui scopo è l’aumento delle potenzialità visive attraverso l’uso di caschi e visori; alla visione tridimensionale vengono aggiunti testi e informazioni. Infine si tiene traccia della posizione e dell'orientamento della testa in modo tale che le immagini siano orientate con la vista dell’utente. La differenza rispetto ad un sistema virtuale immersivo, è che, in questo caso non si ha l’obiettivo di sostituire o copiare la realtà bensì di fornire un mezzo complementare a supporto per potenziare le capacità sensoriali dell’utente.

3.3 Periferiche immersive

Potrebbe sembrare che un sistema totalmente immersivo sia, escludendo i costi, la soluzione migliore, tuttavia l’uso di alcune periferiche immersive, in ambito riabilitativo, non sempre ha portato ad un aumento dell’efficacia rispetto agli ambienti semi e non immersivi.

Sono emerse, infatti, alcune problematiche:

25 B. Steven K. Feiner - Augmented Reality: A New Way of Seeing - Scientific American, April 2002

26 M. Alcaniz, J. A. Lozano, B. Rey - Technological Background About VR - Internet and Virtual Reality as Assessment and Rehabilitation Tools for Clinical Psychology and Neuroscience, Amsterdam, IOS Press, 2004
La progettazione di ambienti virtuali per la riabilitazione cognitiva

- Difficoltà di utilizzo e ripida curva di apprendimento.
- Eventuale necessità di personale tecnico preparato.
- Stanchezza fisica.
- Costi delle periferiche.

Il problema principale che si è riscontrato è un generale senso di frustrazione nell’incapacità di utilizzo di periferiche speciali\(^{27}\) cui normalmente non si è abituati ad usare, come evidenziato nello studio relativo al progetto *Virtual Classroom* dove il casco Virtuale ha creato difficoltà di utilizzo non solo nei bambini disabili. È vero che lo scopo di tali periferiche è di rendere la visione e l’interazione il più possibile naturale, ma a tale risultato spesso si arriva solo dopo lunghe sessioni di pratica. L’utente nelle prime sessioni di prova si trova spaesato. In pazienti con difficoltà di apprendimento e attenzione è necessario introdurre questo ulteriore grado di difficoltà? Inoltre tali strumenti potrebbero richiedere la necessità di avere personale tecnico preparato per la gestione, l’installazione e l’utilizzo.

Infine non bisogna sottovalutare il costo delle periferiche in questione, che incide spesso anche sul livello qualitativo e sull’efficacia. In particolare è stato preso in considerazione l’utilizzo di un guanto virtuale "Data Glove", rispetto al mouse si può muovere anche lungo una terza coordinata spaziale, tipicamente la profondità, oltre ad aggiungere la possibilità di manipolare gli oggetti in maniera simile al movimento naturale della mano, ad esempio chiudo la mano per prendere un oggetto.

\(^{27}\) E. Viire – Health and safety issue for VR – Communicatin of ACM Vol 40, Luglio 1997
3.3.1 Il guanto P5Glove

L’analisi delle funzionalità del dispositivo prodotto e distribuito dalla Essence Reality28, unito ai test dello stesso, ha portato a trarre le seguenti considerazioni relative alla tipologia d’interfaccia. La periferica dispone di tutte le possibilità di interazione offerte dal classico mouse, tipicamente movimento e clic, inoltre aumenta le dimensioni d’utilizzo del sistema.

In particolare si possono evidenziare alcuni punti:

\begin{itemize}
\item E’ possibile associare al solo movimento un’azione, corrispondente a movimento più clic del mouse, attribuendo maggior naturalezza al sistema.
\end{itemize}

28 Essential Reality pagina ufficiale del dispositivo di tracking P5Glove, http://www.essentialreality.com/index.asp
La progettazione di ambienti virtuali per la riabilitazione cognitiva

- Associando comandi semplici ad operazioni complesse, è possibile ridurre il bisogno di precisione nel movimento, mentre si compiono azioni. In un contesto riabilitativo, si può sollevare l’utente dal compiere sequenze interattive particolarmente complesse, in particolare l’utente non deve imparare sequenze di tasti complesse.

- Risultano aumentati ad undici i gradi di libertà d’azione sei di movimento rotazione e traslazione e cinque di “grab” relative al tracciamento della posizione delle dita, rispetto ai due (massimo tre con il “wheel”) del mouse. Questo aggiunge un ulteriore senso di realismo, permettendo azioni non altrimenti possibili.

Per quanto riguarda i difetti, essi risultano direttamente proporzionali alla qualità del dispositivo utilizzato, infatti, in un dispositivo “ideale” tali difetti non sarebbero presenti, e quindi inconsistenti. Dunque le caratteristiche negative riscontrate dipendono dal dispositivo preso in considerazione, il P5 Glove, bisogna tenere presente che ha il pregio di essere particolarmente economico e di essere reperibile sul mercato non essendo un prototipo strettamente da laboratorio, il prezzo conseguente al costo limitato sono le seguenti limitazioni:

- Il sistema d’invio e ricezione di dati fra il guanto e il ricevitore si basa sugli infrarossi anziché sugli ultrasuoni, questo comporta una limitazione nell’ambiente di movimento della mano, poiché il guanto deve essere “in vista” della torre di ricezione senza ostacoli tra i due, questo non sarebbe necessario in un dispositivo ad ultrasuoni. Il cavo di collegamento fra la torretta e il guanto è un ulteriore elemento di disturbo sulla mobilità complessiva del sistema.

- Il guanto a livello hardware risente del suo basso costo, risulta meno maneggevole a causa del suo peso e per la
relativamente bassa possibilità di personalizzazione offerta; il sistema di sensori è poco performante e dettagliato, e quindi è causa di imprecisione nella lettura dei dati con la conseguenza diretta di introdurre difficoltà fisica di movimento del guanto nello spazio reale e degli oggetti in un ambiente tridimensionale.

- Scarsa precisione nella rappresentazione del movimento nel mondo 3d deriva anche dalle librerie e dai driver forniti in dotazione con il P5 Glove, i quali utilizzano algoritmi di gestione dei dati, rilevati dall’infrarossi, non perfettamente ottimizzati. E’ possibile ottimizzare il codice, anche se il “collo di bottiglia” del sistema rimane l’apparato hardware, il quale non è migliorabile in modo diretto.

- Si è rilevata la necessità di allenarsi all’utilizzo del dispositivo per ottenere risultati consistenti con gli obiettivi posti, questo è ovviamente contrastante con lo scopo originale di ottenere semplicità e naturalezza che si era proposto.

Dai test effettuati, è emerso che l’utilizzo di un guanto virtuale, in un contesto riabilitativo, concorre ad aumentare il senso di immersione e qualità del sistema, aumentando il grado di naturalezza nell’interazione. Tuttavia per evitare di introdurre difficoltà di utilizzo a causa della natura del dispositivo stesso, si è preferito utilizzare un modello di interazione più semplice, puntando su strumenti che aumentassero il grado di immersione e realismo senza introdurre difficoltà di utilizzo ad esempio il suono tridimensionale e un buon livello qualitativo grafico, in conclusione non si esclude, anzi si auspica l’introduzione di dispositivi di tipo Data Glove, ma maggiormente performanti.
3.4 Interattività del sistema

Considerando gli aspetti di prodotto rivolto alla riabilitazione cognitiva
il grado di immersione è il principale ed unico aspetto necessario? E’
sufficiente creare e disporre di un sistema totalmente immersivo?

Secondo quanto emerso in letteratura29, in un’applicazione rivolta ai
disturbi cognitivi, la possibilità di interazione riveste un ruolo cardine,
oltre a favorire anch’essa il senso di presenza del sistema.

Per interattività si intende la possibilità da parte dell’utente di poter
modificare e interagire con gli oggetti presenti sulla scena. Se si
pensa ad un ambiente totalmente non interattivo, in questo caso
all’utente viene mostrata la scena, ma non gli è possibile nessun
grado di interazione. Per grado di interazione si considera anche la
possibilità di muoversi liberamente lungo la scena, di poter esplorarla
a piacimento.

Al fine di misurare il grado di interattività si usano due parametri il
range e il mapping.

Per range si intende il numero di oggetti dell’ambiente che possono
essere manipolati, oltre al numero e tipo di interazioni che si possono
effettuare.

Mentre per mapping si intende la corrispondenza tra le azioni umane
e come queste vengono realizzate all’interno dell’ambiente. In linea
di massima è auspicabile avere un valore di range particolarmente
elevato, anche se nel nostro dominio applicativo non è
necessariamente vero.

29 G.Riva - Design of clinically oriented virtual environments: a communicational
approach - Cyberpsychol Behav 3, 2000
3.4.1 Complessità e interazione

Uno delle questioni che emerge ed è spesso causa di difficoltà da affrontare in fase di progettazione, è la possibilità da un lato di permettere all’utente di compiere interazioni od azioni complesse, dall’altro rendere queste ultime facili da eseguire e da comprendere. Un numero eccessivo di azioni eseguibili su un oggetto potrebbe mettere in difficoltà l’utente, nello stesso tempo associare una combinazione di comandi per ogni azione potrebbe rendere troppo complesse le modalità di interazione, in linea generale la soluzione proposta in questo lavoro è quella di definire un numero limitato di modalità di interazione da eseguire in maniera abbastanza semplice e a seguito dell’interazione associare degli eventi in base al contesto e alla tipologia dell’oggetto.

3.5 Grado di realismo del sistema

Quanto una scena deve essere dettagliata? Bisogna cercare di modellare ogni più piccolo dettaglio di un oggetto, per una riproduzione assolutamente fedele? Ovviamente un maggior livello di dettaglio porta ad un ambiente virtuale più realistico.

Sono due le variabili che stimano il livello di realismo: l’ampiezza sensoriale e la profondità sensoriale.

L’ampiezza sensoriale è la capacità di un mezzo di comunicazione di presentare informazioni attraverso i sensi dell’utente. Il Realismo di un ambiente non è dato da ogni input sensoriale isolato, ma dalla combinazione di tutti gli input sensoriali. Il Realismo dipende inoltre dalla profondità dell’informazione sensoriale. Questo concetto può essere descritto in termini di qualità, un’immagine con grande profondità viene generalmente considerata di maggiore qualità rispetto ad un’immagine con poca profondità.
Il grado di realismo concorre ad aumentare il senso di presenza, tale dettaglio ha come primo impatto un costo elevato in termini monetari sia in fase di progettazione, ad esempio la necessità di avere strumenti professionali e di tecnici grafici qualificati, sia in termini di hardware richiesto per la fruizione del prodotto, bisogna perciò cercare un compromesso in termini di costi e prestazioni.

Figura 3-2 Classificazione dei media in termini di realismo e interattività di Jonathan Steuer30

3.6 Feedback del sistema

Il tempo di risposta del sistema a seguito di un’interazione, si riferisce al ritardo tra l’istruzione dell’utente e la risultante azione, quando non c’è un ritardo nel sistema, si dice che il sistema esegue le istruzioni in “tempo reale”. Dunque se il sistema risponde nello stesso modo cui reagirebbe il mondo reale, allora il sistema viene detto in “tempo-reale”; altrimenti si riscontra un ritardo nell’applicazione mentre il computer ridisegna la scena, riproduce un suono a seguito dell’interazione, risponde ad un’azione dell’utente. Un sistema dotato di alta definizione ma basso tempo di risposta, potrebbe perdere naturalezza e facilità d’uso.

3.7 Il suono 3D

L’utilizzo della dimensione spaziale nella realtà virtuale, consente di “spazializzare”31 anche gli effetti sonori. Oltre alla posizione nello spazio definita insieme al suono questo ultimo avrà associata una direzione ed un’intensità che variano in funzione della distanza dell’ascoltatore, perciò è possibile ad uno stimolo visivo che vi sia collegato anche uno stimolo sonoro aumentando di conseguenza il grado di realismo. In generale si possono avere due situazione diverse: suono in movimento e “ascoltatore” in movimento.

Suono in Movimento

Supponiamo di camminare a fianco della ferrovia sentiremo il rumore del treno che pian piano cresce dai diffusori posteriori, raggiunge il suo massimo quando ci è a fianco, per poi scomparire progressivamente dai diffusori anteriori.

31 J. Blauert - Spatial hearing: The psychophysics of human sound localization- Cambridge, MIT Press 1999
“Ascoltatore” in movimento

In lontananza si sente il rumore di una cascata, ma non si vede, il nostro avatar seguendo la direzione del suono e percependo la distanza in base all’intensità sarà in grado di raggiungerla.

Di maggiore interesse nel nostro contesto è il secondo esempio, che dà un’idea di come il suono può aiutare a verificare la capacità di orientamento. Il suono in generale, tridimensionale e non, permette di rendere più gradevoli gli ambienti.

3.8 Aspetto dell’ambiente simulato

Le caratteristiche finora trattate dipendono tipicamente dal sistema, da scelte progettuali, dal livello delle prestazioni ed infine dai costi, quali sono le caratteristiche dell’ambiente simulato in termini rappresentativi, che aspetto deve avere la scena?

3.8.1 Astrazione ed aspetto ludico

Pensando al caso del trattamento di patologie di natura fobica, lo scenario deve essere incentrato nella realizzazione di una simulazione il più possibile attinente alla realtà, che metta in condizione l’utente di rivivere l’esperienza che genera ansia, in un contesto cognitivo la scena più che reale deve poter motivare l’utente ad interagire, ed esplorare, nel caso di un bambino l’aspetto ludico, e fantasioso gioca in questa ottica un ruolo importante, l’esercizio non deve essere imposto come un compito, ma esso stesso tramite la motivazione ludica deve invogliare a portare a termine i compiti assegnati.

Il mondo virtuale deve essere fantasioso, non deve ricordare continuamente al bambino il mondo reale e i tutti i problemi che gravano sulla sua condizione di disabile.
3.8.2 Un ambiente sicuro

Una delle caratteristiche degli ambienti virtuali è quella di offrire un ambiente protetto, non si corrono rischi o danni fisici, ma considerando anche l’aspetto psicologico, uno scenario è emotivamente sicuro?

L’ambiente ricreato deve dare all’utente una sensazione di maggiore padronanza, di percepire che un suo sbaglio non comporta una punizione o un fattore negativo, le situazioni non devono essere inizialmente percepite come difficili, ma devono incoraggiarlo ad affrontarle.
3.9 Uno sguardo d’insieme

Al fine di poter dare una visione generale degli aspetti analizzati, viene presentata una tabella riassuntiva redatta da Kalawsky, ottenuta analizzando un largo numero di proposte in letteratura al fine di determinare le possibili cause che influenzano il “senso di presenza”.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Variables</td>
<td></td>
</tr>
<tr>
<td>Sensory outputs</td>
<td>Positive (for higher numbers)</td>
</tr>
<tr>
<td>Consistency of sensory outputs</td>
<td>Positive (when consistent)</td>
</tr>
<tr>
<td>Visual outputs have various dimensions</td>
<td>Strong see dimensions below</td>
</tr>
<tr>
<td>- Display size</td>
<td>Positive (for larger proportion)</td>
</tr>
<tr>
<td>- Viewing distance</td>
<td>Positive (for larger proportion)</td>
</tr>
<tr>
<td>- Quality of image</td>
<td>Positive (for high quality)</td>
</tr>
<tr>
<td>- Depth cues</td>
<td>Positive</td>
</tr>
<tr>
<td>- Camera techniques</td>
<td>Positive</td>
</tr>
<tr>
<td>Audible outputs also has different dimensions</td>
<td>Strong</td>
</tr>
<tr>
<td>Other sensory outputs (smells, touch etc)</td>
<td>Less strong than audio or visual</td>
</tr>
<tr>
<td>Body movement and force feedback</td>
<td>Positive when done well</td>
</tr>
<tr>
<td>Interactivity of medium</td>
<td>Positive</td>
</tr>
<tr>
<td>Visibility/obtrusiveness of medium</td>
<td>Negative</td>
</tr>
<tr>
<td>Interference from real world</td>
<td>Negative</td>
</tr>
<tr>
<td>Human contact</td>
<td>Positive</td>
</tr>
<tr>
<td>Content Variables</td>
<td>Can be both objective and subjective</td>
</tr>
<tr>
<td>Characters and storylines</td>
<td>Positive and negative</td>
</tr>
<tr>
<td>Media conventions</td>
<td>Usually negative</td>
</tr>
<tr>
<td>Nature of representation</td>
<td>Positive and negative</td>
</tr>
<tr>
<td>Media user variables</td>
<td>These are highly subjective and depend directly on the individual</td>
</tr>
<tr>
<td>Willingness to suspend disbelief</td>
<td>Positive</td>
</tr>
<tr>
<td>Previous experience</td>
<td>Positive or negative</td>
</tr>
</tbody>
</table>

32 R. Kalawsky - The Validity of Presence as a Reliable Human Performance Metric in Immersive Environments - 3rd International Workshop on Presence, March 2000
3.10 Uno strumento per il tutoring

Dalle precedenti considerazioni attraverso una rappresentazione tridimensionale sufficientemente immersiva e interattiva, l’utente viene stimolato e motivato a partecipare attivamente al percorso riabilitativo. Spesso e in particolare nel caso di bambini tali caratteristiche non sono sufficienti, è necessario che a fianco del bambino ci sia la presenza di una guida, un tutor che lo aiuti, che lo corregga, gli permetta di comprendere gli errori, che sia in grado di capire le reali esigenze del bambino, e infine gli fornisca l’apporto umano che una macchina non può dare. Dunque la figura del tutor riveste un ruolo importante e decisivo nel percorso riabilitativo. Un applicativo, o un software non è in grado di sostituire questa figura, ma diventa uno strumento potente e flessibile nelle sue mani; è necessario di conseguenza fornire uno strumento che sia grado di rispondere non solo alle esigenze dell’utente, ma anche del tutor o terapeuta stesso.

Analizzando quanto proposto in altri ambienti virtuali, non è stato possibile definire uno standard o un elenco di caratteristiche comuni e necessarie, dato il numero ridotto e la natura spesso prototipale, in ogni caso è stato possibile delineare alcune proprietà che idealmente concorrono ad aumentare le potenzialità e l’efficacia dell’applicativo.

3.10.1 Personalizzazione

La complessità e la natura dei problemi di un soggetto disabile non permette di poter stabilire, a priori, quale sia il percorso riabilitativo migliore; ne consegue che la possibilità di creare esercizi, percorsi e scenari su misura diventa fondamentale in questo contesto; un prodotto rivolto alla riabilitazione trae grande beneficio dalla possibilità che lo scenario simulato sia indipendente dall’esercizio
associato, quindi si possa creare un percorso riabilitativo attraverso l’esecuzione di esercizi il più possibile vari.

Sarà pertanto compito del tutor ideare uno scenario attinente alle esigenze dell’utente, e assegnargli dei compiti, degli obiettivi che possano il più possibile avvicinarsi alle sue esigenze.

3.10.2 Graduazione degli scenari

L’ambiente e in particolare gli scenari non devono essere unici, ma permettere di essere graduati secondo livelli di difficoltà, in quest’ottica il livello di personalizzazione citato in riferimento alla possibilità di creare esercizi su misura, deve permettere allo stesso modo di creare percorsi ed esercizi simili in modo che differiscano in questo caso nel livello di interazione o difficoltà.

3.10.3 Ripetitività

La possibilità di ripetere lo scenario risulta dunque fondamentale, al fine di poter valutare i miglioramenti e di riprendere da capo l’esercizio in caso di errori, tale caratteristica non deve essere l’unica, altrimenti si correbbe il rischio di perdere il fattore motivante di un ambiente stimolativo, l’eccesso di ripetizione potrebbe annoiare precocemente, in particolare in un contesto di problemi attentivi ove il livello di attenzione è già di per se molto basso.

3.10.4 Risultati

La possibilità di poter revisionare le azioni intraprese dall’utente durante lo svolgimento dello scenario, sono il principale strumento attraverso il quale il tutor sono in grado di poter valutare il percorso riabilitativo. Lo scopo non è quello di valutare attraverso un test il livello di attenzione o disturbi che affliggono l’utente, ma quello di
fornire uno strumento che sia in grado di misurare ed informare sulle azioni intraprese dall’utente, in modo da confrontare i miglioramenti, gli errori sessione per sessione in modo da capire se c’è stato un approccio sbagliato. L’idea è di fornire al tutor le informazioni necessarie che gli permettano grazie alle sue conoscenze sia del bambino che dei problemi di natura cognitiva, di trarre i giudizi appropriati.
4 Scenari e percorsi riabilitativi

L’analisi di quanto proposto nelle altre ricerche in ambito cognitivo, mette in luce che spesso il prodotto applicativo finale è molto specifico nelle funzioni offerte o negli scenari proposti: è il caso di AVIRC, nel quale sono presenti molti sottogiochi, ma l’ambiente e la natura degli esercizi sono prestabiliti. Altrimenti può essere presente un alto grado di dettaglio e qualità, ma un unico scenario è l’esempio del prodotto Virtual Classroom, o viceversa scenari ove l’ambientazione è fine a se stessa. In questo lavoro si è cercato di ideare un applicativo che fosse il più possibile flessibile, rimanendo nello stesso tempo confinato ai problemi di natura cognitiva. Tale scopo viene raggiunto con la possibilità di poter creare esercizi e scenari personalizzati. Inoltre la memoria, l’attenzione e alcune funzioni cognitive tra cui la risoluzione di semplici problemi ben si adattano a ricevere trattamento riabilitativo tramite computer grazie alla natura schematica dei processi coinvolti, ne sono esempio i numerosi software non tridimensionali o non immersivi sviluppati in questo senso. Nel presente capitolo vengono analizzati i disturbi di carattere cognitivo, fornendo una panoramica generale, al fine di proporre alcuni percorsi riabilitativi da poter creare ed eseguire nell’applicativo.
4.1 Approccio restorativo o funzionale

L’ approccio corrente alla riabilitazione cognitiva tradizionale viene classificato secondo due principali domini, restorativo e funzionale (Rizzo, 1997)\(^ {33} \).

I due metodi possono essere visti come gli opposti poli di un continuo, al cui interno si interpongono le differenti tecniche riabilitative. Il primo attraverso la ripetizione, l’uso di procedure gerarchiche, l’allenamento focalizzato sui processi cognitivi, in particolare quelli mnemonici ed attentivi, lo scopo è quello di allenare il “come pensare”.

L’approccio funzionale punta sulla ripetizione di attività naturali e comportamentali della vita comune, in questo senso si cerca di allenare il “come fare”. Eseguito una serie di eventi preparati e mirati alla scopo di imparare sequenze comportamentali da applicare in un contesto reale.

Gli ambienti virtuali possono fornire un approccio che integra entrambi gli aspetti, l’allenamento e la ripetizione possono essere inseriti in un contesto che sia rilevante sul piano funzionale.

Alla base di entrambi i metodi, vi è il concetto di “plasticità neurale”\(^ {34} \), la possibilità del cervello di ripararsi a seguito di un trauma o danno, grazie agli stimoli che riceve dall’ambiente. La validità del concetto come risposta ad un arricchimento o impoverimento dell’ambiente è riconosciuto in letteratura\(^ {35} \), tale concetto può essere esteso anche agli ambienti virtuali.

\(^ {34} \) F. Rose, D. Johnson - Brain Injury and After - John Wiley & Sons, 1992

\(^ {35} \) M. J. Renner, M. R. Rosenzweig - Enriched and impoverished environments Effects on brain and behaviour – Springer Verlag, New York, 1987
Il presente lavoro segue in misura maggiore l’approccio restorativo fornendo uno strumento riabilitativo costruito sulla creazione di esercizi mirati, attraverso la ripetizione degli stessi, al fine di stimolare le capacità attentive, mnemoniche ed esecutive dell’utente.

4.2 Analisi dei modelli attentivi

Vengono analizzati i principali modelli attentivi e il loro funzionamento per poi proporre dei percorsi che in qualche modo possano essere adattabili. Tali proposte vogliono essere solo d’esempio alle funzioni dell’applicativo e non fornire pretese di completezza o efficacia. Gli esercizi sono stati classificati in base ai processi attentivi, meglio adattabili a fornire un modello mirato, mentre i processi mnemonici e le funzioni esecutive, tra cui la capacità di pianificare, la comprensione dello spazio temporale sono state considerate funzioni estendibili e ben adattabili in tutte le tipologie degli esercizi.

L’attenzione può essere definita come il sistema funzionale che consente di dirigere e focalizzare l’attività mentale secondo gli scopi prefissati (A. Mazzocchi)36

Sono necessarie due condizioni, la prima che sia attivo uno stato di allerta e vigilanza, il cervello è “pronto” per ricevere le informazioni, la seconda richiede le capacità di concentrazione e selezione che permettono di dare “il via” alle informazioni ed elaborarle. Se queste condizioni sono presenti l’attenzione può organizzarsi in dinamiche operative a seconda delle richieste, secondo le modalità presentate:

36 A. Mazzucchi - I disturbi attentivi e la loro riabilitazione - La riabilitazione Neuropsicologica, Masson1999
4.2.1 Attenzione automatica/volontaria

Automatica

Funzione attentiva che permette di produrre risposte a stimoli, senza analisi consapevole di informazioni. È un meccanismo di allerta e di difesa, come la risposta ad un dolore od ad un suono; questo tipo di attenzione in generale è presente anche in seguito a traumi cranici e persino in stato di coma superficiale.

Volontaria

Permette l’esecuzione di processi mentali consci, è focalizzata su un solo canale, e richiede maggiore disponibilità attentiva tanto più l’attività mentale da svolgere è complessa. È frequente, infatti, che l’esecuzione di attività semplici avvenga correttamente, mentre risulti difficoltoso svolgere operazioni in presenza di disturbi ambientali o l’esecuzione di più compiti contemporaneamente. È stata inoltre verificata la difficoltà ad apprendere nuove sequenze comportamentali da associare all’attenzione automatica, con la diretta conseguenza di sovraccaricare il lavoro dell’attenzione volontaria.

4.2.2 Attenzione selettiva o multicanalizzata

Selettiva

Multicanalizzata

Nella maggior parte delle attività quotidiane entra in gioco l’attenzione multicanalizzata, che è la capacità di rispondere simultaneamente a più risposte ambientali, a monitorare più informazioni e infine a predisporre più risposte comportamentali. Un tipico esempio è la guida dell’automobile, dove bisogna tener conto di più informazioni, percorso, traffico, guida, distribuendo le varie operazioni tra attenzione automatica e volontaria; Ad esempio lascio la guida all’attenzione automatica e dedico l’attenzione volontaria ad un'ipotetica conversazione. In caso di mutamento delle variabili ambientali devo essere in grado rapidamente di spostare l’attenzione volontaria sulle nuove informazioni. Dunque è necessario stabilire un grado di priorità ad ogni informazione, e mantenere costante un livello di attenzione in grado di correggere e pianificare nuovamente le priorità in caso di variazioni ambientali. Sono numerose le difficoltà che si possono incontrare in questo tipo di operazioni, spesso non si riesce a gestire contemporaneamente più informazioni, inoltre non sempre il grado di priorità è stabilito correttamente in base agli stimoli e informazioni rilevanti. Infine non sempre si è grado di rispondere prontamente ai mutamenti ambientali e ridistribuire le risorse attentive.
4.2.3 **Attenzione momentanea/sostenuta**

- **Momentanea**

 Si presta a monitorare tutte le informazioni di tipo ambientale, acustiche visive e tattili, cui si è circondati, viene prestata attenzione e risposta solo ad alcune di esse in funzione del livello di importanza. Può essere difficile poter stabilire quali informazioni siano irrilevanti o di disturbo, e stabilire quali necessitino di una risposta immediata, spesso quindi si può essere sia distratti che distraibili.

- **Sostenuta**

 Si tratta di mantenere la concentrazione su un determinato problema o esercizio operativo per periodi di tempo abbastanza lunghi. Ne consegue facilità di affaticamento, difficoltà di mantenimento dell’attenzione, e tempi di concentrazione relativamente brevi.

4.2.4 **Attenzione alternata**

Capacità di spostare il focus attentivo da uno stimolo all’altro, e di conseguenza reagire prontamente ai nuovi stimoli. Gli stimoli possono essere due, ma anche in numero maggiore. Spesso l’attenzione viene spostata non nel momento opportuno oppure quando non richiesto.
4.3 Le funzioni esecutive, la memoria, i disturbi e il tempo negli esercizi

4.3.1 Funzioni esecutive

Le funzioni esecutive sono controllate dalle aree prefrontali, comprendono le capacità di pianificare, programmare, modificare e verificare un'azione volta al raggiungimento di un determinato scopo.

A seguito di un trauma o di un deficit in particolare si evidenzia una tendenza alla perseverazione, un’incapacità a modificare una strategia operativa adottata e una spiccatà difficoltà nei processi d’astrazione. Un obiettivo può essere visto come una sequenza di azioni necessarie per raggiungerne lo scopo. Al fine di permettere la valutazione delle capacità di pianificazione e risoluzione di problemi, nella creazione degli esercizi è stata introdotta la possibilità di inserire degli obiettivi di diversa natura in modo da poter avere il concetto di sequenza di azioni o di strategia.

Sequenza

Semplici eventi quali: raccogli un oggetto, raggiungilo o suonalo, sono inseriti all’interno di una sequenza temporale, dunque è necessario intraprendere le azioni in ordine, in questo modo l’utente deve collocare ogni operazione in un adeguato contesto spazio-temporale, ad esempio non è possibile raccogliere un oggetto, se prima è richiesto di raccoglierne un’altro.

37 J. R. Crawford - Introduction to the assessment of attention and executive functioning - Neuropsychological Rehabilitation 8, 1998
Strategia

Di fronte ad una serie di obiettivi da raggiungere non vincolati da una sequenza, l’utente ha la possibilità di completare gli obiettivi come meglio crede, se da un lato lo scopo finale è quello di completare tutti gli obiettivi proposti, non meno importanza riveste il come si è arrivati al compimento. L’utente è stato in grado di pianificare una strategia ottima che ad esempio minimizzi il tempo? Esemplificando se deve raccogliere degli oggetti da due gruppi un vicino e uno lontano, ha raccolto prima tutti quelli vicini o si è spostato continuamente tra i due gruppi? Se deve raggiungere un luogo prefissato ha scelto la strada più breve? Non si tratta solo di ottimizzare la strategia, ma potrebbe essere necessario poter stabilire più strategie o risolvere semplici problemi di tipo logico.

Come esempio si potrebbe avere lo scopo di raggiungere un oggetto posto in un luogo raggiungibile solo dopo un lungo e arduo percorso, ma nello stesso tempo avere la possibilità di prendere l’oggetto col cursore e spostarlo in posizione più comoda.

4.3.2 Il tempo

Lo scenario senza la dimensione temporale, rimarrebbe un oggetto statico e immobile, nella strutturazione degli esercizi bisogna tener presente del tempo, la possibilità di avere un inizio ed una fine.

La dimensione temporale diventa anche un parametro valutativo nella misura del tempo impiegato a completare una determinata azione o sequenza di azioni.
4.3.3 La memoria

La struttura della memoria può essere distinta in due sezioni che lavorano in maniera differente sono la memoria a breve termine e la memoria a lungo termine. La prima opera memorizzando completamente le informazioni trattenendole per pochi secondi si pensi alla capacità di ripetere un numero di telefono appena sentito, la seconda opera immagazzinando i contenuti semantici essenziali, non si memorizza un libro intero, ma la sua trama e alcuni elementi principali.

In riferimento alla memoria, grande importanza è rivestita dalla quantità di informazioni a corredo con lo scenario, da presentare all’inizio dello svolgimento del compito, è possibile verificare se tali informazioni sono state acquisite in base ai risultati prodotti o alla necessità di dover visualizzare nuovamente tali informazioni.

La natura generale di tale aspetto, provvede a trasformarla in una caratteristica comune e non specifica di un particolare esercizio.

Migliorare le qualità attentive inoltre, permette di ottenere benefici in tutte le attività della vita quotidiana in cui l’attenzione stessa svolge un ruolo attivo, come secondo effetto si ha anche un incremento di efficienza nelle dinamiche mnemoniche, in particolare della “Memoria lavoro“, l’attenzione svolge un ruolo fondamentale nell’assicurare una corretta comprensione ed organizzazione delle informazioni durante l’apprendimento, oltre ad un’adeguata selezione di ricordi durante la rievocazione.

38 A. Maravita, A. Mazzucchi – I disturbi di memoria e la loro riabilitazione - La riabilitazione Neuropsicologica, Masson1999

39 Capacità di mantenere attive e presenti informazioni provenienti dall’esterno o dalla memoria a lungo termine, per compiere operazioni complesse
4.3.4 Aggiunta di elementi di disturbo

Al fine di verificare le capacità attentive dell’utente, si è ritenuto valida la possibilità di introdurre elementi di disturbo.

Gli elementi di disturbo possono essere di due tipologie:

Elementi di disturbo Ambientale esterni

Questo tipo di disturbi, validi per tutte le tipologie di esercizi proposti, comprende una serie di “eventi” generali che non hanno caratteristiche in comune con il problema da risolvere, ma hanno lo scopo di distogliere l’attenzione, questi possono essere effetti sonori o visivi come l’illuminazione di alcuni oggetti. La possibilità di riprodurre eventi di disturbo a comando del tutor può verificare la capacità dell’utente di mantenere la concentrazione. E’ necessario che tali interventi siano controllabili dal tutor, dato che non è possibile conoscere lo stato emotivo e attentivo dell’utente in fase di definizione dell’esercizio.

Elementi di disturbo specifici

Questi ultimi introducono un livello di complessità maggiore, come la possibilità di scegliere tra più oggetti, e si riferiscono in dettaglio al singolo al singolo scenario.
4.4 Gli Esercizi

"La durata illimitata dell’attenzione della macchina viene messa al servizio di chi non riesce a concentrarsi per più di un minuto”

(Handimatica) 40

4.4.1 Attenzione selettiva o focalizzata in assenza di interferenze

Questo tipo di percorso prevede che l’esecuzione sia focalizzata su un unico “argomento”, un singolo esercizio, un tema comune, un solo obiettivo.

Spostamento e manipolazione di oggetti

Viene indicato l’oggetto da spostare, viene lasciato solo il compito di raggiungere l’obiettivo. Il breve esercizio, andrà poi eseguito un numero sufficiente di volte al fine di misurare i progressi ottenuti. La valutazione dell’esercizio avviene misurando tempi ed eventualmente errori, ad esempio l’oggetto potrebbe essere stato posizionato non nel punto desiderato.

40 HANDImatica 2004 Mostra-convegno nazionale per l’integrazione del disabile tecnologie avanzate, informatica e telematica, per favorire l’integrazione delle persone disabili http://www.handimatica.it/
Interazione con singoli oggetti e ricerca di oggetti simili

Vengono indicati alcuni oggetti con cui interagire, l’obiettivo è misurare i tempi di reazione e vedere se effettivamente l’utente interagisce con gli oggetti indicati.

E’ possibile inoltre proporre più oggetti simili con cui interagire uno per volta, si tratta di mantenere costante lo stesso tipo di azione da compiere, variando di volta in volta l’oggetto, ad esempio nella posizione. Per la memoria potrebbe essere utile fornire le indicazioni di quali oggetti interagire elencandoli nella descrizione, proponendo poi una scena ove sono presenti tali oggetti insieme ad altri non facenti parte dell’elenco.

4.4.2 Attenzione sostenuta

Come base di partenza si può aumentare la durata degli esercizi del primo tipo, aumentando la complessità o il tempo necessario a svolgere le azioni, in questo modo si valuta la capacità di mantenere l’attenzione per periodi più lunghi.

Strade e percorsi virtuali

Questo tipo di esercizi permette di creare sequenze con tappe da raggiungere in successione, la difficoltà del tracciato può essere opportunamente calibrata ad un livello facile in modo da spostare il problema sul mantenimento della concentrazione.

Si tratta di inserire dei punti di controllo, per verificare se l’avatar ha raggiunto un determinato luogo rappresentato nello specifico da un oggetto. La presenza di più punti di controllo permette di creare un
percorsa a tappe attraverso una lista ordinata. Incrementando il numero di punti di controllo si può vincolare l’esercizio verso un tracciato particolare, lasciando meno libertà all’utente. Le indicazioni di percorrenza possono essere fornite tutte all’inizio per testare le capacità di elaborare più informazioni, oppure aggiungendo una descrizione che indichi quale sia in un dato momento la tappa del percorso da raggiungere.

Elementi di disturbo

L’obbligo dell’utilizzo di una via prestabilita complessa, in presenza di un percorso più semplice e immediato che porta al raggiungimento dell’obiettivo, verifica la capacità di aver appreso e rispettato le indicazioni di percorso date in precedenza. Inoltre è possibile inserire elementi che creino ostacoli ed intralcio al movimento, e necessitano di essere spostati.

Spostamento di un oggetto in più posizioni

L’obiettivo è mantenere la concentrazione su un oggetto, e spostarlo nelle posizioni richieste in sequenza, anche in questo caso le informazioni possono essere date tutte all’inizio, o volta per volta al raggiungimento di ogni posizione richiesta.

4.4.3 Attenzione alternata

Interazione con oggetti diversi in base allo stimolo sonoro

Ad ogni stimolo sonoro corrisponde l’interazione con un singolo oggetto, ad esempio a seguito del suono “A” interagisci con l’oggetto cubo, a seguito del suono “B” interagisci con l’oggetto “cilindro”,
alternando la riproduzione della sequenza suono A, casualmente con la sequenza suono B, si fa in modo di spostare l’attenzione da una sequenza di operazioni all’altra.

Riconoscimento sonoro

L’associazione dei suoni avviene oltre che sul piano logico, anche su quello visivo associando ad un oggetto il proprio suono caratteristico, ad esempio a un animale il proprio verso, è possibile verificare se il suono è stato ascoltato e se è stata associata correttamente l’informazione sonora con quella visiva, infine anche l’elemento spaziale riveste importanza, il suono è collocato in un contesto spaziale: se l’osservatore è troppo distante questo sarà poco udibile.

Elementi di disturbo

L’aggiunta di suoni ambientali che non fanno parte degli oggetti della scena, possono fornire un mezzo per valutare la capacità da parte dell’utente di mantenere la concentrazione.

4.4.4 Attenzione multicanalizzata

Localizzazione di oggetti

Si tratta di raggiungere un oggetto, localizzandolo nello spazio virtuale; l’esercizio prevede di concentrare l’attenzione sulla ricerca dell’oggetto, e nello stesso tempo gestire i comandi di movimento dell’avatar. L’idea è quella di fare in modo che sia necessaria l’esplorazione dell’ambiente per arrivare a raggiungerlo; ad esempio l’oggetto potrebbe essere nascosto, o visibile solo da alcune angolazioni, infine potrebbe essere necessario raccogliere oggetti che lo nascondono alla vista.
Scenari Misti

Questa tipologia può essere considerata come percorso riepilogativo o comprensivo di più aspetti, si tratta quindi di combinare più tipologie di esercizi base, che rappresentano sottoproblemi di un esercizio generico. L’utente in questo modo è in grado di risolvere ed eseguire più esercizi di differente natura. E’ possibile perciò creare scenari vari e mirati secondo gli aspetti desiderati, inoltre aumentando la varietà di azioni e di conseguenza diminuendo la ripetitività, è probabile che si ottenga un maggiore coinvolgimento da parte dell’utente.

L’obiettivo è quello di far compiere una serie di azioni, con un ordine non prefissato. Si possono ad esempio costruire sezioni differenti, ipotetiche stanze o luoghi ove in ognuno di essi è presente un esercizio di diversa natura, o nel caso opposto un ambiente unico con più esercizi.

Elementi di disturbo

Si possono introdurre degli oggetti anch’essi manipolabili, ma che non servono al raggiungimento degli obiettivi. Si potrebbero inserire oggetti simili nella forma a quelli da usare, ma che differiscono nel colore.

Ambienti liberi

Non sempre è necessario avere degli obiettivi definiti a priori: potrebbe essere utile analizzare i comportamenti di un utente posto in ambiente libero da vincoli. Mancando in questo caso la motivazione data dal compimento dell’obiettivo è necessario fornire un ambiente dettagliato dal punto di vista visivo e aggiungere la possibilità di interazione con la maggior parte degli oggetti presenti sulla scena.

Un’altra possibilità è lasciare al tutor il compito di definire gli obiettivi durante l’esplorazione, comunicandoli a voce, in modo da adattarli ai
comportamenti in tempo reale dell’utente, in questo caso l’applicativo perde parte delle sue funzioni, relative alla definizione e controllo degli obiettivi, tuttavia rimane uno strumento che permette l’interazione, la navigazione, la visione e l’analisi dei risultati.

4.5 Alcune considerazioni

La possibilità di ideare esercizi è dunque molto ampia, gli scenari “misti” ottenuti dalla combinazione di più aspetti mostrano come le potenzialità di un applicativo di questa natura siano alimentate dalla capacità da parte del tutor di ideare e creare ambienti ed esercizi il più possibile stimolanti e nello stesso tempo efficaci.

Si pensi ad un semplice esercizio ove bisogna spostare un oggetto, in un caso si crea una stanza spoglia con un cubo da spostare, nel secondo una camera addobbata con vari giochi nel quale bisogna spostare uno di questi, la sostanza non cambia, ma l’effetto agli occhi del bambino è sicuramente diverso.
5 Palestra Virtuale: il sistema realizzato

Una volta definiti i possibili scenari ed esercizi è stato creato un applicativo denominato “Palestra Virtuale”, che permette di usufruire e interagire con gli scenari proposti. Rispetto a quanto proposto da altri lavori è proprio la capacità di eseguire scenari differenti il punto di forza dell’applicativo. Per raggiungere questo scopo è presente un editor della scena e degli obiettivi che permette di personalizzare e creare nuovi scenari. Particolare cura è stata posta nella registrazione e formattazione del file di log con l’obiettivo di una buona leggibilità e della ricchezza delle informazioni; non vengono espressi giudizi, ma viene fornito al tutor uno strumento di supporto per la valutazione delle sessioni.

5.1 Il Progetto REVErie

REVErie, dal francese “rêveire”, sogno, ma anche acronimo di rehabilitative educational virtual envoronments.

Il progetto nasce nell’ambito del laboratorio Arcslab del dipartimento di elettronica e informazione del politecnico.

5.1.1 Rêveire

Il termine rêveire secondo Bion\(^41\), è uno dei fattori della mente, che consente alle impressioni date dai sensi e alle esperienze emotive di venire trasformate in immagini visive o in immagini corrispondenti a

\(^{41}\) W. R. Bion - Apprendere dall’esperienza - Armando, 1972
modelli sensoriali ed essere utilizzate per: pensare, sognare, ricordare o esercitare le funzioni intellettuali.

La rêveire, inoltre, è uno stato mentale simile al sogno in cui la madre, identificandosi nel bambino, si lascia trasportare dai ricordi e dall'immaginazione per aiutarlo a dare un senso ai contenuti emotionali ed affettivi proiettati su di lei. Si può pensare quindi alla necessità di un elemento esterno, un oggetto o una persona mediatore, che elabori mentalmente e restituisca ciò che diciamo, che facciamo, facendo acquisire a questi gesti e pensieri confusi che provocano turbamento, un carattere nuovo, più chiaro, rassicurante, trascinando in qualche modo la persona verso un più alto grado di coscienza e consapevolezza di sé. Il processo di pensiero necessita oltre che della riflessione, funzione della mente che trae dalla realtà esterna le valutazioni per operare su di essa razionalmente, anche dell'immaginazione creativa per cogliere gli aspetti affettivi ed emotivi dell'esperienza in cui non si deve giustificare l'appartenenza né alla realtà interna né a quella esterna. Nei bambini con difficoltà cognitive e relazionali, che hanno un apparato mentale molto fragile, è molto difficile instaurare un rapporto o far accettare nuove proposte. La dimensione ludica e fantasiosa degli ambienti proposti nell'ambito di REVErie, può instaurare nel bambino quello stato mentale, tra reale e irreale, tra sogno o realtà che è lo stato di rêveire, può allentare nel bambino l'ansia intervenendo positivamente sullo stato di permanente "difesa relazionale".

5.1.2 Scopo del progetto

Lo scopo è di approfondire la metafora dell'esplorazione topologica 3d applicata ai tre contesti: di narrazione, di assunzione di ruolo e di esercitazione visuospatiale. L'obiettivo è di realizzare attraverso un framework comune tre applicativi distinti. Il primo Palestra Virtuale è argomento di questo lavoro, il secondo Storytelling, nel quale viene utilizzata la tradizionale tecnica della narrazione della fiaba, in un
contesto tridimensionale, ove è possibile, grazie all’interazione, modificare il corso della storia. Il terzo “Gioco di Ruolo” pone l’accento sul piano cooperativo, proponendo un mondo interattivo e popolato da più utenti in contemporanea, utilizzando un architettura di rete.
5.2 L’applicativo Palestra Virtuale

L’applicativo si compone di uno strumento per la creazione degli scenari e degli obiettivi, l’editor, e di uno strumento che permette all’utente l’interazione con lo scenario, il player. Entrambi implementano le funzioni e i metodi offerti dal framework.
5.3 Architettura

Figura 5-1 Palestra Virtuale: Architettura, utenti, componenti e modelli dei dati prodotti e acquisiti.

5.4 Il Player

Per Player si intende l’applicazione che carica gli scenari e ne permette l’interazione. Durante la fase di progettazione e implementazione è stato tenuto conto di quanto citato nel capitolo 2 riguardo le proprietà e caratteristiche che meglio si adattano ad un prodotto di questa natura. Rispetto ai prodotti presentati, ove la
navigazione avviene sempre in prima persona, è stata introdotta la duplice modalità di esplorazione in prima e terza persona, mentre la prima è sempre presente, la seconda è opzionale.
Palestra Virtuale: il sistema realizzato
Lo scenario viene caricato all’inizio, selezionando la cartella che contiene i file che lo descrivono, attraverso la descrizione della scena e dei suoni sono recuperati i modelli sonori contenuti nella cartella Sound del programma e i modelli 3d degli oggetti nella cartella "Models", e infine sono caricate le proprietà della scena e degli oggetti.

5.4.1 L’interfaccia

Si è scelto di utilizzare un interfaccia che fosse possibilmente facile da usare, particolare cura è stata data alla grafica dei bottoni affinché risultassero gradevoli e intuitivi.
Palestra Virtuale: il sistema realizzato

Figura 5-3 Player: L’interfaccia, le icone e il cursore.

I pulsanti sono stati posti in posizione simmetrica ai lati dello schermo in modo da non interferire eccessivamente con la rappresentazione della scena, in basso a destra con dimensioni minori il tasto di uscita. In alto a sinistra vicino all’icona di un fumetto compare il testo informativo, infine in alto a destro vi è la barra del volume. E’ possibile comunque, nascondere e disattivare i bottoni dell’interfaccia dallo schermo, al fine di evitare che l’utente prema involontariamente le icone. Tale comando è affidato al tutor tramite una combinazione di due tasti. Infine se necessario è possibile sostituire facilmente le icone dell’interfaccia con modelli grafici differenti, l’immagine delle icone è in formato bitmaps è possibile perciò modificarle con normali programmi di grafica.

Icona Inizia: Permette di iniziare lo scenario
Icona Pausa: Ferma il tempo e lo scenario

Icona Riprova: Permette di ripetere lo scenario

Icona Avatar: Se l’avatar è presente sulla scena, permette di entrare in Modalità Avatar, altrimenti posiziona l’avatar

Icona Info: Mostra informazioni o descrizione del scenario.

Icona Tasti: Mostra riassunto comandi

Icona Esci
Bottoni specifici al riconoscimento sonoro

Riguardano il funzionamento di una modalità particolare e non necessariamente presenti.

Icona Suona: Se presenti suoni casuali vi è la possibilità di suonarli, altrimenti l’icona non è presente a schermo.

Icona Nessun Oggetto: È necessario premerla in caso che si riconosca che a suonare non è stato nessun oggetto della scena.
Palestra Virtuale: il sistema realizzato

5.4.2 L’ output informativo

Un'icona fumetto, posta nella parte alta dello schermo, ha il ruolo di guidare e informare gli utenti, al suo fianco compare del testo informativo proposto a questo scopo. In generale si possono avere informazioni sullo stato del programma ad esempio si informa che lo scenario è in pausa, o che sta caricando l’avatar. Altrimenti è possibile avere informazioni o aiuti generici ad esempio nel caso l’avatar sia caduto, oppure tipicamente prima di iniziare. Infine sono mostrati i risultati degli eventi in particolare quelli che portano al raggiungimento di un obiettivo.

5.4.3 La scena

La scena è composta da un insieme di modelli tridimensionali in formato 3ds (3DStudio) dotati delle proprietà spaziali, si utilizzerà nel seguito il termine generico, oggetto.

Per scenario si intende la scena unita alle proprietà interattive e descrittive degli oggetti e della scena stessa. Ad ogni modello è possibile applicare proprietà ed eventi. Infine lo scenario può essere dotato di un avatar, si tratta di un oggetto a tutti gli effetti, ma che gode di proprietà speciali.

La rappresentazione tridimensionale della scena è data dal punto di vista e dipende dalla posizione e dall’orientamento della telecamera.

5.4.4 La telecamera

La visuale della scena è mostrata tramite gli occhi della “telecamera” che fornisce il punto di vista, spostando la telecamera è possibile navigare liberamente all’interno della scena, inoltre si può volgere lo
Palma Virtuale: il sistema realizzato

sguardo in tutte le direzioni, l’effetto contribuisce ad aumentare il grado di realismo della scena.

5.4.5 L’ avatar

La parola Avatar42 deriva dalla religione induista ove indica la reincarnazione di una divinità, in un ambiente virtuale con il termine avatar si intende la rappresentazione digitale dell’utente che sta visitando l’ambiente. Come rappresentazione dell’avatar si è scelto di utilizzare un modello animato che avesse una struttura poligonale non troppo complessa e che fosse in grado di riprodurre un modello di camminata abbastanza realistico.

Si è utilizzato la rappresentazione di un modello di manichino in legno, in modo che potesse essere abbastanza compatibile con tutti gli scenari proposti, non è preclusa la possibilità di sostituirlo con un modello diverso.

Il movimento è realizzato tramite trenta animazioni che rappresentano i singoli passi.

5.4.6 Il movimento sulla scena dell’avatar

L’avatar si muove lungo la direzione cui è orientato, è possibile ruotarlo per definire una nuova direzione. Al fine di rendere il movimento più realistico e naturale è possibile muoversi lungo una traiettoria curva premendo contemporaneamente rotazione e movimento in avanti. La gestione del movimento avviene tramite l’utilizzo delle frecce, comunemente usate per questo scopo dai giochi tradizionali. Si può seguire l’avatar spostando la visuale con il mouse, al movimento è associato lo sguardo che si muove lungo la direzione data dal movimento del mouse, in contemporanea si può usare la

42Origini del termine avatar http://en.wikipedia.org/wiki/Avatar
rotellina del mouse per avvicinarsi o allontanarsi lungo la direzione ove lo sguardo è volto.
La gravità

Al fine di rendere maggiormente realistico il movimento è stata introdotta la gestione della gravità, relativamente al solo avatar. Ne consegue la necessità per l’avatar di muoversi lungo un piano o un oggetto solido. L’avatar è in grado di salire e scendere lungo piani inclinati, e se viene lasciato fermo su uno di questi scivolerà verso il basso, con una velocità proporzionale all’inclinazione del piano.

Tale caratteristica permette di delimitare la scena, oltre che con le normali barriere fisiche costituite da oggetti.

E’ possibile inoltre creare un percorso ove l’avatar possa cadere se non rispecchia il tracciato prestabilito, tenendo presente che tale evento non deve avere ripercussioni negative sull’utente, l’avatar viene semplicemente riposizionato nella posizione di partenza.

Gli ostacoli

Ogni oggetto posto lungo il cammino dell’avatar, se non specificato diversamente è un ostacolo, l’avatar viene fermato se si muove nella direzione perpendicolare ad esso, altrimenti “scivola” lungo i bordi dell’oggetto.

5.4.7 Gestione delle interazioni

All’utente viene data la possibilità di interagire con gli oggetti della scena attraverso due differenti modalità, attraverso il cursore o mediante l’avatar, quando l’applicativo è in pausa non è possibile effettuare operazioni sugli oggetti della scena.
La mano (il cursore)

Il cursore a forma di mano permette di interagire con gli oggetti della scena, la mano passando sui modelli cambia forma, indicando l’oggetto e chiudendosi quando prende l’oggetto.

Vicino alla mano compare inoltre il nome dell’oggetto e le descrizioni che gli sono state associate. Attraverso l’uso del tasto sinistro è possibile interagire con l’oggetto selezionato; con il tasto destro, se possibile l’oggetto viene preso per effettuare le operazioni di spostamento.

L’avatar

Il secondo modo per interagire con gli oggetti è attraverso l’avatar; ogni oggetto è dotato di una “Boundind Box”, il rettangolo di dimensioni minime che lo contiene, invisibile all’utente, quando l’avatar ne entra in contatto avviene l’interazione e viene attivato l’evento associato.

5.4.8 Le proprietà degli oggetti

Sono state definite alcune proprietà ed eventi necessari alla costruzione dello scenario.

Nome

E’ possibile assegnare un nome ad un oggetto, viene mostrato quando il mouse passa sopra all’oggetto, può essere usato anche come breve descrizione per oggetti che non hanno obiettivi associati.
Spostabile

L’oggetto può essere sposato sulla scena con il mouse altrimenti è fisso, per sicurezza se non specificato l’oggetto non è spostabile, al fine di evitare spostamenti involontari di oggetti sensibili quali pavimenti o muri.

Gli eventi associati ad un oggetto

Due classi di eventi distinte sono state associate agli oggetti, il primo “Evento Click” interviene a seguito di interazione con il mouse, il secondo “Collisione con avatar” a seguito dell’interazione dell’avatar con l’oggetto.

Evento Click

Evento associato alla pressione del mouse quando il cursore è sull’oggetto.

❖ Niente/standard

Questo tipo di interazione non ha effetti visivi o sonori, ma serve per stabilire se l’utente ha interagito con l’oggetto corretto utile nel caso di esercizi di interazione, e a definire con quali altri oggetti, non necessari, ha interagito.

❖ Suona

A seguito di click l’oggetto se ha un suono associato, lo suona.

❖ Raccogli

L’oggetto a seguito di click scompare dalla scena.
Palestra Virtuale: il sistema realizzato

- **Raccogli e suona**
 A seguito della raccolta se è presente un suono associato, questo ultimo viene riprodotto.

Collisione con avatar

Evento associato alla collisione dell’avatar con un oggetto della scena

- **Niente/Collide**
 L’avatar viene bloccato dall’oggetto se ci finisce contro, l’oggetto è solido.

- **Suona**
 L’avatar viene bloccato dall’oggetto se ci finisce contro l’oggetto è solido, se ha un suono associato, lo suona.

- **Raccogli**
 Quando l’avatar raggiunge l’oggetto, viene raccolto e scompare dalla scena.

- **Raccogli e suona**
 A seguito della raccolta se è presente un suono associato, questo ultimo viene riprodotto.

- **Non Collide**
 L’oggetto non è solido, l’avatar passa attraverso.

5.4.9 Gli obiettivi

Ad uno scenario sono associate oltre alle proprietà degli oggetti una serie di obiettivi che costituiscono lo schema logico dell’esercizio, il player a priori non ne conosce il numero né la natura, il suo compito è di caricarli e poterli gestire in modo indipendente, controllando a seguito di ogni interazione o evento, se uno di essi è stato raggiunto, nel qual caso provvede a disattivarlo, una volta che tutti gli obiettivi sono stati raggiunti lo scenario viene considerato completato.
Gli obiettivi sono proprietà indipendenti dei singoli oggetti, oppure possono essere legate fra loro nel caso di un percorso.

Le tipologie di obiettivo:

- Obiettivi di posizione
- Obiettivi di interazione
- Obiettivi di percorso
- Obiettivo sonoro di riconoscimento

Posizione

Ad ogni oggetto può essere associata una lista di obiettivi di posizione, ogni posizione è specificata da una coordinata spaziale che determina un punto preciso all’interno della scena e un valore di range. Con il valore di range si determina l’ampiezza della zona calcolata a partire dalla coordinata specificata.

Grazie a questi due parametri è possibile specificare zone da raggiungere sufficientemente grandi o piccole in base alle esigenze.

Ogni obiettivo è inserito all’interno di una lista, in un dato momento è attiva una sola posizione da raggiungere, e una volta raggiunta viene attivata la successiva posizione appartenente alla lista dell’oggetto. E’ possibile associare una descrizione ad ogni posizione della lista in modo tale da fornire indicazioni al raggiungimento della posizione, la descrizione compare vicino al cursore relativamente alla posizione attiva.

Percorso
Il percorso è composto da una a cento tappe da raggiungere in sequenza, ognuna di esse è costituita da un oggetto e una descrizione. La natura delle azioni ed eventi del percorso dipendono quindi dall’oggetto e dalle sue proprietà ed eventi associati, ipoteticamente un oggetto può anche essere non visibile all’utente, ma serve in ogni modo a determinare se l’avatar ha raggiunto un dato luogo. La descrizione associata serve ad aiutare l’utente a capire quale è la tappa da raggiungere, se ci sono più tappe da raggiungere viene mostrata solo l’indicazione della tappa attiva.

Interazione

Un obiettivo di interazione viene definito tramite il numero di interazioni richieste, l’evento associato all’interazione e infine una descrizione. Se l’evento associato è raccogli il numero di interazioni diventa ininfluente dato che un oggetto può essere raccolto una sola volta.

La descrizione compare quando il puntatore è sull’oggetto e viene mostrata solo se l’obiettivo di interazione è ancora attivo.

Obiettivo sonoro di riconoscimento

A differenza degli altri obiettivi non concorre a determinare la conclusione dello scenario, e viene riferito ad un oggetto tramite il suono allegato, si tratta di riconoscere l’oggetto quando suona casualmente a seguito della pressione del tasto apposito, il risultato dell’obiettivo positivo o negativo verrà memorizzato nel log.

5.4.10 Modalità controllo obiettivi

Il Player a seguito di ogni interazione con l’oggetto andrà a controllare se l’oggetto ha obiettivi ancora attivi in base alla natura
dell’azione effettuata. Ogni oggetto ha assegnato una variabile che serve a monitorare lo stato degli obiettivi; se ne ha almeno uno ancora da raggiungere segnala che gli obiettivi non sono completati.

Ad esempio se ho spostato l’oggetto, controllo se ha raggiunto la posizione obiettivo attiva in quel momento, quando un oggetto ha completato tutti gli obiettivi per cui è stato creato cambia stato. Lo stato di ogni oggetto dipende a sua volta dagli stati dei singoli obiettivi al suo interno.

In maniera analoga il percorso ha una lista di posizioni attive in un dato momento, quando l’avatar raggiunge l’oggetto indicato, viene attivato il successivo. Quando il percorso è completato questo verrà segnalato al player, che considera lo scenario terminato solo nel caso in cui tutti gli oggetti hanno obiettivi completati e il percorso, se presente è stato terminato.

5.4.11 La descrizione dello scenario

Il ruolo della descrizione della scena rivesta grande importanza; è possibile dare informazioni sullo scenario, fornire le istruzioni degli esercizi, infine dare una motivazione allo svolgimento del compito assegnato.

La descrizione viene mostrata all’inizio del caricamento dello scenario, ma è possibile in ogni momento consultarla nuovamente, attraverso tale operazione si può stimare quanto l’utente è in grado di interpretare correttamente le istruzioni assegnatogli, l’entità del numero di consultazioni può essere un parametro valutativo.

E’ stata introdotta la possibilità di inserire un commento sonoro da associare alla descrizione, per permettere agli utenti ipovedenti, affetti da difficoltà nella lettura di poter comprendere facilmente le indicazioni; L’inserimento del commento sonoro è opzionale e semplice, basta inserirlo nella cartella dello scenario. Si è pensato inoltre alla possibilità di introdurre un modello avente il ruolo di
“saggio”, da inserire in ogni scenario a cui associare come suono la descrizione o altre informazioni di aiuto, tale modello essendo unico e comune, sarebbe un riferimento simbolico in caso di necessità.

Bisogna tenere presente che il ruolo del tutor è anche quello di fornire un supporto nei casi particolari, in modo tale che l’azione combinata tutor e applicativo riesca a far fronte a qualunque tipo di evenienza.

5.4.12 Picking e spostamento degli oggetti

A seguito della pressione del tasto destro, se l’oggetto è spostabile viene preso dalla mano, è l’operazione di picking effettuata dal cursore. Dato che il puntatore si muove sul piano dello schermo, viene raccolto l’oggetto più vicino in termini di profondità, l’oggetto viene legato alla mano fintantoché non si preme il mouse per rilasciarlo nella posizione desiderata.

Il movimento avviene in ogni caso lungo le tre dimensioni, muovendo il mouse si sposta l’oggetto lungo le coordinate X e Z, avanti e indietro per la profondità, destra e sinistra per l’asse X. In contemporanea è possibile alzare ed abbassare l’oggetto lungo l’asse Y attraverso la rotellina del mouse. Il cursore segue l’oggetto posizionandosi lungo la proiezione del modello tridimensionale sullo schermo.

5.4.13 I disturbi ambientali

Sono stati introdotti due tipi di disturbi affidati al tutor tramite comando da tastiera. Il primo, sonoro, prevede che, ad ogni pressione del tasto specifico, venga riprodotto uno dei suoni definiti come casuali in fase di creazione dello scenario; l’utilizzo è affidato a discrezione del tutor.
Il secondo è un disturbo di tipo visivo e prevede l’illuminazione casuale degli oggetti sulla scena, uno per volta. L’oggetto è illuminato per alcuni secondi, poi in automatico ne viene illuminato un altro. L’effetto risultante dipende dal colore degli oggetti e può in alcuni casi scurire o illuminare troppo gli oggetti o cambiarne il colore. Si è cercato di trovare in ogni caso un'impostazione che mediasse l'effetto.

5.5 Produzione dei risultati

Le azioni intraprese durante lo svolgimento dello scenario sono memorizzate all’interno di un file denominato Log.rtf presente nella cartella del programma. Il formato utilizzato è l'RTF43 (Rich Text Format), un tipo di codifica del testo "tagged" simile a quello di Html, il documento viene codificato come del testo "semplice" e attraverso l’utilizzo di marcatori o identificatori, "tag", viene indicato quale tipo o tipi di "abbellimento", grassetto, corsivo, tipo di carattere, da applicare al testo; tra questi anche il colore.

Dato che la tipologia dell’esercizio non è nota dal Player, ma dipende dal tipo di scenario che viene caricato, può avere perciò obiettivi di carattere misto, le informazioni sono raccolte in base al tipo di evento che le ha scatenate e all’oggetto cui si riferiscono.

In virtù dell’utilizzo del colore è stato possibile migliorare e facilitare la lettura dei risultati, inoltre grazie alla classificazione in base al colore è possibile immediatamente individuare le informazioni che più interessano in un dato momento.

Il file log, se non eliminato viene continuamente aggiornato, in modo tale da poter revisionare globalmente i progressi effettuati per ogni

43 Specifiche Rich Text Format
sessione oltre alla data viene memorizzato il nome dello scenario e il nome dell’utente.
Esempio

<Nome Utente> Lorenzo

<Nome Scenario> Piano Alberato

5.5.1 I colori e il loro significato

La classificazione di dei colori corrisponde anche ad una tipologia distinta di informazioni all’interno dell’applicativo questo può permettere di definire una struttura di log a livelli.

Blu: Evento generale, globale del programma inizio, pausa, completamento dello scenario.

Verde: Obiettivo raggiunto in riferimento ad un oggetto o azione corretta.

Grigio: Azioni non rilevanti al fine del completamento dello scenario o di carattere generale.

Rosso: E’ stato commesso un errore o si è tentato di compiere un’azione non permessa.

Arancio: Raggiungimento di oggetto percorso o interazione tramite avatar.

Azzurro: Interazione tramite mouse su un oggetto.

In particolare sono presenti due classi di notazioni:

<Evento>
Informazione generica

<Oggetto: Arpa, ID: 2>
Informazione riferita ad un particolare oggetto che ha subito un’interazione, viene mostrato anche l’ID identificativo univoco al fine di evitare ambiguità.

5.5.2 Misurazione del tempo

Al fine di verificare il tempo impiegato ad eseguire le azioni o a compiere gli obiettivi viene presentato il tempo impiegato riferito al momento della pressione del tasto Inizia.

<Evento>Inizio Pausa Tempo: M:1 S:8.42
<Evento>Fine Pausa durata pausa: Tempo:S 2.19

In caso di pausa il timer viene fermato, e non viene sommato ai tempi di esecuzione delle azioni.

Alcuni esempi di informazioni

<Oggetto: Palla, ID: 8>Spostato in <X=-138, Y=6, Z=103>
Tempo:S 6.13
Spostamento di un oggetto, a cui non sono associati obiettivi.

<Oggetto: Tavolino, ID: 5>L'oggetto non è spostabile
Tempo:S 7.54
Tentativo di spostare un oggetto non spostabile

<Oggetto: Papero, ID: 12>Obiettivo di posizione N:1,
raggiunto! Tempo:S 15.55
Palestra Virtuale: il sistema realizzato

<Oggetto: Papero, ID: 12> Obiettivi di posizione completati! Tempo: S 15.55
L’oggetto ha raggiunto il suo obiettivo di posizione il primo, dato che non ha altri obiettivi di posizione ha completato tutti i suoi spostamenti.

<Oggetto: Piano Neve, ID: 2> Oggetto raggiunto da avatar! Tempo: S 35.91
L’avatar ha raggiunto un dato oggetto, non inserito in un percorso.

<Oggetto: Pinguino Baldo, ID: 22> Oggetto percorso N:2 raggiunto! Tempo: S 43.41
Obiettivo percorso raggiunto e completato.

<Oggetto: Mela, ID: 14> L’oggetto è stato raccolto! Tempo: S 12.56
Interazione tramite mouse effettuata

<Oggetto: Piano, ID: 3> Riprodotto suono casuale Tempo: S 30.38

<Oggetto: Piano, ID: 3> L’oggetto che ha suonato è stato riconosciuto! --CORRETTI: 1 SU 1 TENTATIVI Tempo: S 46.42

<Oggetto: Arpa, ID: 2> Riprodotto suono casuale Tempo: M:1 S:1.78

<Oggetto: Chitarra, ID: 7> Non è questo l’oggetto che ha suonato -- ERRORI: 1 SU 2 TENTATIVI Tempo: M:1 S:8.91

Esempio di riconoscimento sonoro, vengono memorizzati gli errori e il numero di tentativi.
5.6 L’ Editor

L’editor permette di creare gli scenari descritti nel precedente capitolo con un ampio grado di libertà e personalizzazione. Rispetto al player, l’editor è rivolto al solo tutor, o eventualmente a un designer delle scene. L’interfaccia dell’editor relativamente alla definizione delle proprietà, è stata realizzate mediante l’uso delle librerie Win32, questa soluzione permette di definire ed editare i parametri attraverso l’uso di finestre di selezione che semplificano l’immissione e la visione sia del testo che dei dati. Inoltre sono presenti dei controlli affinché l’utente crei degli scenari consistenti ed eviti obiettivi in contrasto tra loro, ad esempio viene definito un obiettivo di posizione, ma l’oggetto non è spostabile. I vincoli inseriti sono in ogni caso pochi, per consentire il maggior grado di libertà. La procedura di creazione dello scenario e assegnamento obiettivi non è immediata, ma necessita, seppur di poca, pratica.
Figura 5-4 Editor: Schema dei componenti, dei dati e delle funzioni principale, coinvolte durante la modifica di uno scenario.

L’ Editor carica lo scenario nello stesso modo del Player, possono essere caricati e aggiunti modelli visivi e sonori alla scena. E’ presente un’interfaccia che permette di editare le proprietà della scena e degli oggetti, lo scenario è salvato tramite una sua descrizione formale nella cartella "Save". Nei paragrafi successivi vengono affrontate le principali funzioni dal punto vista pratico.

Fase di creazione dello scenario passi generali:

- Caricamento di uno scenario vuoto o di uno già presente.

- Creazione o modifica della scena in termini visuali e salvataggio della descrizione formale.
Assegnamento dei suoni.

Definizione di obiettivi, percorsi, eventi e proprietà.

5.6.1 Caricare uno scenario

Viene richiesto il nome della cartella ove sono contenuti i dati dello scenario, se tale cartella non è presente viene caricato uno scenario vuoto.

5.6.2 Creazione della scena

Nel caso non si disponga di uno scenario già creato, le prime operazioni da eseguire richiedono il posizionamento degli oggetti sulla scena.
L'interfaccia mette a disposizione alcune icone che gestiscono le funzioni principali, è necessario l'utilizzo dei comandi da tastiera per modificare gli oggetti presenti sulla scena.

Posizionare un oggetto sulla scena

Premendo il bottone rappresentato da una teiera, si apre una finestra che permette la selezione di un modello in formato 3ds.
presente nella cartella “Models”; avere a disposizione un numero di modelli elevato, realizzati preferibilmente da un team grafico, risulta di notevole importanza.

Il cursore prende la forma della teiera, l’oggetto comparirà a schermo a seguito di click nella zona indicata. E’ opportuno controllare se è presente un oggetto selezionato, in caso affermativo il nuovo oggetto creato viene considerato “Figlio” di quello selezionato, ne consegue che se viene spostato il padre, ingrandito o in generale manipolato anche il figlio subirà tali azioni, non è vero il contrario.

Manipolazione degli Oggetti

L’oggetto una volta sulla scena necessita di essere modificato per essere posizionato nella posizione corretta, i modelli spesso sono ruotati nelle direzioni non desiderate (dipende dalle coordinate del modello3ds), oppure le dimensioni non sono uniformi con gli oggetti presenti sulla scena; infine è necessario sistemare l’oggetto nella posizione desiderata. Non ci sono vincoli posti a frenare la creatività dei designer delle scene.

Sono presenti a questo scopo alcune operazioni che modificano le proprietà spaziali:

Rotazioni
Palestra Virtuale: il sistema realizzato

- Tasto “X” rotazione lungo l’asse X
- Tasto “Y” rotazione lungo l’asse Y
- Tasto “Z” rotazione lungo l’asse Z

Alzare e abbassare

- Tasto “PageUp” per alzarlo
- Tasto “PageDown” per abbassarlo

Ingrandire e diminuire le dimensioni

- Tasto “Q” per ingrandirlo
- Tasto “A” diminuire le dimensioni

Movimento

Selezionando un oggetto, è possibile aprire un menù che presenta l’opzione muovi, l’oggetto verrà legato al cursore, sarà possibile quindi spostare l’oggetto tramite mouse nella posizione desiderata. Il movimento in questo caso avverrà lungo le coordinate X e Z.

Elimina

Selezionando un oggetto, è possibile aprire un menù che presenta l’opzione elimina, l’oggetto verrà cancellato assieme alle sue proprietà, e obiettivi se presenti.

Salvare la scena

E’ opportuno salvare la scena prima di assegnare gli obiettivi, premendo l’apposita icona, poiché è possibile che tali operazioni prevedano lo spostamento. La scena verrà salvata nel file Scena.xml nella cartella “Save”.

97
Successivi salvataggi prevedono la creazione di ulteriori file Scena1.xml, Scena2.xml. In uscita viene salvata comunque per sicurezza nel file ScenaAutoSav.xml.
5.6.3 Aggiungere Suoni

Proprietà generali di un suono

Sono le caratteristiche che caratterizzano il suono stesso, a prescindere dall’oggetto a cui sono legate, sono la proprietà di "loop" e il valore di volume: La prima specifica se un suono, relativamente per ogni chiamata della funzione "PlaySound" deve essere riprodotto in modo continuativo o solo fino alla durata del suono stesso. La seconda, definisce il livello del volume della singola sorgente sonora, è un valore compreso tra zero ed uno, proposto in termini percentuali.

Aggiungere un suono ad un oggetto

Se assente, con il tasto destro del mouse su un oggetto è possibile aprire un menù che presenta l’opzione aggiungi suono. Si apre una finestra di dialogo (identica a quella degli oggetti), selezionare la cartella Sound e quindi un suono in formato “wav”.

Modificare le proprietà di un suono

Se l’oggetto ha un suono: E’ possibile aprire un menù che presenta l’opzione proprietà suono si apre una finestra ove è possibile modificare le proprietà sonore di loop, volume e random.
Figura 5-8 **Editor**: Finestra definizione proprietà sonore, è presente una barra per il volume e dei checkbox per la definizione delle proprietà.

Eliminare un suono

Se l’oggetto ha un suono premendo sull’oggetto, compare l'icona a fianco dell’oggetto, premendo sull'icona viene eliminato il suono.

Suoni non legati ad oggetti o d’ambiente

Possibilità di caricare suoni non legati direttamente ad un oggetto.

Premendo il bottone del diffusore sono aggiunti i suoni tramite la finestra di dialogo; è necessario specificare un identificativo compreso tra 1 e 100.

La scelta del suono in formato wave avviene nello stesso modo ai suoni legati ad un oggetto.
5.6.4 Inserire l’avatar e salvare la posizione iniziale

Premendo è possibile posizionarlo come un oggetto normale, su un piano ove possa camminare (forme regolari quadrati, piani, cubi e simili) è consigliato che venga posizionato possibilmente con i piedi non dentro il pavimento o l’oggetto piano. Una volta stabilito il punto maggiormente gradito è possibile salvare la posizione iniziale, tramite menù apposito.

5.6.5 Inserire la posizione iniziale della telecamera

Premendo compare la telecamera, si gestisce come un oggetto normale. Con il tasto destro del mouse sulla telecamera è possibile selezionare le opzione per salvare la posizione. E’ possibile controllare che la visuale sia appropriata, in ogni caso è solo la visuale iniziale.

5.6.6 Le proprietà di un oggetto

Con il tasto destro del mouse su un oggetto è possibile aprire un menù che presenta l’opzione obiettivi dove è possibile selezionare e definire proprietà e obiettivi.

Si apre una finestra che contiene tutte le caratteristiche di un oggetto, tra cui le proprietà.
5.6.7 Inserire degli obiettivi di interazione

L’obiettivo di interazione permette di fare un modo che l’utente interagisca tramite mouse con l’oggetto indicato, il player controllerà che tale azione venga eseguita. E’ possibile inserirlo tramite il menù obiettivi.

![Figura 5-10 Editor: Sezione di finestra obiettivi, definizione dell’obiettivo di interazione e della descrizione associata.]

Definendo l’obiettivo di interazione, mediante un numero positivo, si indica quante volte bisogna interagire con l’oggetto, dipende dalla proprietà di “Evento” Click assegnare un comportamento a seguito dell’interazione; è possibile inoltre aggiungere una breve descrizione che compare quando con il mouse si passa sopra all’oggetto, fino a che è presente l’obiettivo.
Esempio: Raccogliere la frutta dall’albero

- Creare l’albero
- Aggiungere le mele

Per ogni mela

{
- Inserire obiettivo di click > 0
- Inserire un suono (opzionale)
- Mettere evento click = Raccogli
- Aggiungere una descrizione (Opzionale)
}

Il breve esercizio sarà completato quando l’utente avrà completato tutti gli obiettivi di interazione associati.

5.6.8 **Inserire un percorso**

Il percorso è costituito da una lista ordinata di oggetti con cui l’avatar deve entrare in contatto. Il player controllerà che l’avatar raggiunga tali oggetti nell’ordine indicato.

Ripetere le operazioni per ogni oggetto che si vuole inserire nel percorso:

Accedere al menù obiettivi dell’oggetto

Premere "Inserisci in percorso" (l’oggetto entra nella lista percorso nell’ultima posizione).
Palestra Virtuale: il sistema realizzato

Figura 5-11 Editor: Sezione di finestra obiettivi, definizione del percorso, inserimento tappa e descrizione associata.

In base alla proprietà “collisione con avatar” dell’oggetto è possibile assegnare l’evento. Esempio porta la torta al cuoco e poi raggiungi il tavolo da pranzo:

Creazione della scena e aggiunta di eventuali suoni.

- Salvare posizione iniziale avatar
- Inserita Torta nel percorso collisione con avatar = raccogli
- Aggiunta descrizione
- Inserito Cuoco nel percorso collisione con avatar = Suona
- Aggiunta descrizione
- Inserito Tavolo nel percorso collisione con avatar = Suona
- Aggiunta descrizione
5.6.9 Inserire la descrizione di uno scenario

Una finestra dialogo permette di creare o modificare la descrizione, il testo memorizzato verrà presentato all’inizio dello scenario.

Premendo l’icona apposita è possibile inserire o modificare il testo, la descrizione immessa viene automaticamente formattata dal player per essere mostrata tramite il pannello apposito.

5.6.10 Creare scenari di riconoscimento sonoro

Scopo far suonare casualmente degli oggetti posti sulla scena a seguito della pressione del tasto Suona per cercare di riconoscere l’oggetto che ha suonato.

- Creare una scena con alcuni oggetti
- Aggiungere i suoni agli oggetti
- Selezionare la proprietà “Attiva suono come random” per gli oggetti che si desiderano far suonare casualmente.
- Aggiungere suoni di disturbo (Opzionale): aggiungere un suono non legato ad un oggetto e selezionare suono random.

Alla pressione del tasto "suona", verrà riprodotto casualmente uno dei suoni con la proprietà random attiva
5.6.11 Creare degli obiettivi di posizione

Per ogni oggetto

- Spostare l’oggetto dove si vuole che vada messo poi dall’utente e accedere al menù obiettivi dell’oggetto.

![Diagram of object positioning editor]

Figura 5-12 Editor: Sezione di finestra obiettivi, inserimento/eliminazione dell’obiettivo di posizione, del range, della descrizione associata.

- Premendo il tasto "inserisci posizione corrente", nella lista di posizione compare il valore della posizione attuale e un valore di range, tridimensionale a partire dal punto indicato. E’ opportuno usare i valori delle coordinate come riferimento. La soluzione migliore è mettere un oggetto che delimiti la zona che si vuole far raggiungere per permettere di individuare chiaramente dove si voglia che l’oggetto sia posto.

- Ripetere le operazioni elencate al fine di creare una lista di posizioni da raggiungere.
5.6.12 Test dello scenario

L’editor salva in automatico nella cartella "Save" i dati dello scenario all’uscita del programma. All’interno della cartella sono contenute tutte le informazioni dello scenario. Il player può caricare direttamente i file contenuti nella cartella "Save" per verificare l’efficacia dello scenario.
5.7 Il Framework

Il Framework, nasce con il progetto REVErie con lo scopo di essere una base comune ai vari applicativi, tale strumento offre tutte le funzioni per la gestione della grafica e dell’interfaccia. L’utilizzo di un motore grafico “fatto in casa” rispetto alle soluzioni tradizionali permette di rispondere maggiormente alle esigenze degli applicativi, inoltre è aperto a future modifiche. Rispetto alla maggior parte degli engine tridimensionali\(^44\), si colloca in una posizione intermedia tra engine3d puri, che offrono funzioni di basso livello, altamente specializzate negli aspetti grafici e nella qualità visiva, e veri e propri software per la creazione “guidata” di giochi che offrono meta-linguaggi per la programmazione, fornendo tool di sviluppo molto intuitivi, tuttavia limitando notevolmente il grado di libertà lasciato allo sviluppatore. Il Framework, inoltre è stato studiato appositamente per rispondere alle esigenze del progetto REVErie, e rispetto a buona parte delle soluzioni “pronte” non prevede il pagamento di licenze. Bisogna sottolineare che il framework non si limita alle funzioni grafiche, ma offre supporto alle periferiche, all’interfaccia grafica e al sonoro tridimensionale. Non tutti gli engine integrano le funzioni sonore e ancor meno quelle del suono tridimensionale. Infine quasi nessuno offre supporto integrato delle periferiche e dell’interfaccia grafica bidimensionale.

L’autore di questa tesi ha partecipato attivamente durante lo sviluppo alla fase di test delle varie funzioni offerte, e in particolare realizzando il modulo di gestione del suono tridimensionale attraverso l’utilizzo delle librerie sonore OpenAL\(^45\), la realizzazione del framework è a cura di Marco Riboldi.

\(^44\) Rassegna e link di motori grafici per tipologia e funzioni offerte http://www.devmaster.net/engines

\(^45\) OpenAL portale con informazioni generali, link alle SDK e ai Driver www.OpenAL.org
5.7.1 L’astrazione dei suoni e della grafica3d

Grazie alle caratteristiche offerte dal framework, è possibile gestire la grafica e i suoni tridimensionali, attraverso funzioni di alto livello che permettano allo sviluppatore di gestire il tutto semplicemente, nello stesso tempo le funzioni offerte non sono vincolanti e possono essere usate e combinate da chi sviluppa a suo piacimento. La soluzione adottata consiste nell’assegnare ad ogni oggetto o suono un ID identificativo univoco, attraverso l’ID è possibile chiamare tutte le funzioni di gestione sia degli oggetti, sia delle sorgenti sonore.
5.7.2 **Framework, entità modulare**

![Diagram of Framework](image)

Figura 5-14 Framework: Engine, nucleo del framework, processa gli input e produce l'output visivo e sonoro.

Dalla figura si nota che il cuore del Framework è costituito dall’Engine vero e proprio; sono inoltre presenti altri componenti che non appartengono totalmente all’engine, ma che vengono condivisi e fanno da tramite tra l'applicativo e l’engine, il framework a questo scopo è costituito da alcuni moduli:
- Input Manager
- 3DSoundManager
- GUI Manager
- SceneManager

Ogni modulo si occupa solamente dell’aspetto che lo caratterizza in modo indipendente dagli altri. Questo permette una maggiore libertà in quanto immagini, suoni e input sono visti come entità separate che possono essere combinate come meglio si crede all’atto dello sviluppo di un’applicazione.

In secondo luogo la struttura modulare permette al framework di essere aperto a future espansioni in uno dei suoi moduli.

5.7.3 Engine

L’Engine è strutturato come una classe “CEngine” contenente i quattro moduli principali. I metodi presenti consentono di:

- Inizializzare/deinizializzare l’Engine
- Impostare la risoluzione e l’area di visualizzazione
- Avviare il ciclo principale di gestione
- Recuperare informazioni particolari sullo stato dell’Engine

Durante la fase d'inizializzazione, l’Engine si occupa di configurare e attivare a sua volta i quattro moduli. Il metodo MainLoop, avvia un ciclo all’interno dell’Engine che coinvolge tutti i moduli allo scopo di gestirli opportunamente. L’Engine richiede l’implementazione da parte dello sviluppatore di un metodo denominato user_AfterRendering(), nel quale viene inserito il codice per gestire aspetti che riguardano l’applicazione.

Struttura del ciclo principale:

- Lettura tempo
- Render della Scena
- Render della GUI
- user_AfterRendering()
- Render del Cursore
- Update dei timer
I moduli SceneManager e GUIManager forniscono le funzioni per la gestione della grafica attraverso l’uso delle librerie grafiche OpenGL46.

5.7.4 SceneManager

L’output visivo si ottiene mediante una procedura di "rendering", basata sulle librerie grafiche OpenGL, che permette di convertire le informazioni della scena, ovvero degli oggetti di cui è composta, in un’immagine a video che la rappresenti. All’interno dello SceneManager è presente una classe CScene, che si occupa della gestione del mondo tridimensionale nelle sue parti che lo compongono.

Spesso alcuni oggetti hanno lo stesso modello 3d e differiscono tra loro solo per alcune proprietà rendendo quindi inutile e dispendiosa la memorizzazione di più modelli identici.

Si è adottata perciò una politica che ottimizzasse le risorse definendo due diverse strutture, grazie a questa soluzione si evita il caricamento di modelli identici:

- **Oggetti Statici**: contenenti solo le informazioni sul modello 3d quali vertici, poligoni, texture.
- **Oggetti Riferimento**: contenenti solo informazioni su posizione, orientamento e dimensione seguite da un riferimento al modello statico.

Un’importante funzionalità è la possibilità di gestire gerarchie di oggetti, basate su rapporti padre-figlio, tale relazione è specificabile al momento della creazione di un oggetto. Ogni Oggetto Riferimento presente nella lista, contiene a sua volta una lista di Oggetti

46 Portale sulle OpenGL http://www.opengl.org/
Riferimento. In questo modo si crea una struttura ad albero che permette di gestire gerarchie molto complesse.

- Gli elementi di cui è composto un oggetto .3ds non sono gestibili tramite gerarchia.
- La posizione dei figli è relativa al padre.
- Un figlio può essere a sua volta padre di altri oggetti.
- Un oggetto senza figli è detto foglia
- Le operazioni compiute sul padre influenzano i figli.
- Le operazioni compiute sulle foglie non hanno effetto su altri oggetti.

Le operazioni ereditabili sono le trasformazioni geometriche (posizione, orientamento, dimensione), il picking, la visibilità e la cancellazione. Nella fase di rendering la lista dei riferimenti fornisce le informazioni su posizione, orientamento, dimensione degli oggetti e, grazie al riferimento del modello nella lista degli oggetti statici, verrà renderizzato l’oggetto 3d.

5.7.5 GUIManager

Gestisce la rappresentazione bidimensionale, e viene usato per la visualizzazione dell’interfaccia e del testo. Tale modulo permette ampia libertà di personalizzazione dell’interfaccia. Ogni elemento è denominato frame ed è rappresentato da un rettangolo che può essere posizionato in qualunque parte dello schermo, è inoltre possibile associargli forme e colori differenti attribuendo differenti texture.
5.7.6 InputManager

Si occupa di gestire le periferiche attraverso le quali è possibile fornire input, come Mouse e Tastiera oppure periferiche più complesse quali: Joystick, DataGlove, e sensori. Questo modulo ha il compito principale di leggere le informazioni dai dispositivi di input e fornire allo sviluppatore queste informazioni tramite opportuni strumenti. Viene utilizzato un algoritmo di “polling” che ad intervalli regolari interroga la periferica.

La gestione delle periferiche, dall’inizializzazione all’interrogazione, avviene internamente per mezzo delle librerie DirectInput, mentre allo sviluppatore vengono forniti gli strumenti per leggere lo stato, abilitare e disabilitare una periferica.

E’ previsto il supporto anche per periferiche non standard, tale caratteristica permette eventualmente in futuro di integrare dispositivi che più si ritengono interessanti.
Oltre ai dispositivi Data Glove già citati, potrebbe essere interessante l’utilizzo di ulteriori periferiche, allo scopo di rendere la gestione più naturale, semplice ed immersiva. Le periferiche dotate di force-feedback possono essere integrate senza modificare la struttura del player e dei controlli, il touch-screen potrebbe sostituire il mouse nella gestione del puntatore, ed eventuali soluzioni integrate, che prevedono modifiche strutturali nelle modalità di interazione proposte potrebbero essere motivo di sviluppi futuri.
5.7.7 SoundManager

Le funzioni sonore sono state realizzate usando le OpenAL, una API che permette di creare applicazioni dotate di suono a tre dimensioni, in grado di sfruttare sistemi a più diffusori 5.1 e 7.1 oltre a fornire effetti audio e gestire le estensioni AC3 e EAX\(^7\) per le schede dotate di tale sistema.

Alcune caratteristiche delle OpenAL:

- Sfruttano in particolare le funzioni delle schede Creative, ma sono anche utilizzabili con altre schede a patto che supportino il suono 3d.
- Il progetto è in continua fase di sviluppo e viene regolarmente aggiornato, mantenendo la retro-compatibilità.
- Hanno dimostrato le loro potenzialità in produzioni commerciali del calibro di Unreal e Jedi Knight.

L’effetto tridimensionale si ottiene definendo alcune proprietà, relative al “listener”, che rappresenta chi ascolta e definendo le sorgenti sonore.

Al listener si associa una posizione, un orientamento ed eventualmente una velocità. L’effetto sonoro di attenuazione si ottiene spostando la posizione del listener. Al fine di rendere l’effetto reale il listener è stato legato alla posizione della telecamera, in modo da ottenere una corrispondenza effettiva tra quello che si vede e quello che si sente; di conseguenza anche l’orientamento, è stato legato a quello della telecamera.

I suoni a loro volta sono caricati a partire dai file wave, e sistemati all’interno di alcuni buffer che li contengono, vengono quindi legati ad

\(^7\) Materiale relativo alle EAX, http://developer.creative.com
una sorgente che ne definisce le proprietà tra cui: la posizione, il volume, il guadagno e l’attenuazione dovuta alla distanza. Ogni sorgente sonora è indipendente dalle altre, l’intensità del suono e la provenienza vengono calcolate in funzione dei valori attuali del listener, dunque se il listener “guarda” o meglio ascolta verso una sorgente sonora davanti a lui, il suono verrà riprodotto ad alto volume dai diffusori anteriori.

Il SoundManager all’interno del framework inoltre è in grado di gestire suoni in formato ogg vorbis, un formato compresso simile al formato mp3, ma non proprietario. Tale formato può essere usato per la riproduzione della musica di background, il file, generalmente di grosse dimensione 1-4 Megabyte compressi, viene riprodotto spezzettandolo in segmenti di piccole dimensioni, caricandoli in due buffer che vengono alternativamente suonati e caricati con il successivo segmento, tale operazione prevede una funzione di aggiornamento da effettuare ciclicamente, è possibile dunque a differenza dei suoni normali riprodurre solo una musica contemporaneamente, ma nulla vieta di caricare sequenze di brani o implementare un vero e proprio lettore di brani musicali all’interno dell’applicativo. Infine è stata verificata e testata la possibilità di utilizzare gli effetti Eax di Creative, quali ostruzione, occlusione, attenuazione di frequenze particolari, effetti di riverbero ed eco. Gli effetti Eax testati non hanno dimostrato particolare efficacia o motivo d’interesse applicate al contesto dell’applicativo, inoltre l’utilizzo di tali funzioni è limitato alle schede di proprietà Creative si è deciso dunque di trascurare tale soluzione.

Il modulo sonoro è costituito da due classi:

La classe CSoundManager permette all’applicazione di usufruire delle funzioni di basso livello che gestiscono le funzioni base dei suoni, implementate nella classe CSound. Inoltre permette di inizializzare la periferica sonora.

La gestione di un suono è come si vede affidata ad alcune semplici funzioni:
AddSound (LPSTR filename, bool loop); (ritorna l’identificativo)

SetPos (int ID, POINT3D pos);

PlaySound (int ID);

StopSound (int ID);

A supporto delle funzioni base ci sono inoltre vari metodi che permettono di modificare le proprietà sonore. L’effetto dipende, se non specificato altrimenti, dal listener gestibile anch’esso tramite semplici funzioni:

SetListenerOrientation (POINT3D direzione, POINT3D VettoreUp);

MoveListener (POINT3D move);

5.8 Descrizione di un Mondo 3d

Una delle caratteristiche interessanti del framework, è la possibilità di istanziare un mondo virtuale a partire da una sua descrizione formale. Il mondo 3d viene costruito mostrando gli oggetti in grafica 3d, ma quello che l’editor crea non è un mondo in 3d, ma la sua descrizione.

5.8.1 Formato dei dati in ingresso

La scena e gli oggetti sono definiti tramite CML, ovvero Chewed Markup Language che nasce come specifica formale di un mondo in WebTalkII[^1], è adottata dal framework in uso, per la descrizione dei diversi aspetti della scena, ovvero la sua composizione (oggetti e proprietà spaziali), questa scelta all’interno del progetto REVERie è stata effettuata per utilizzare uno standard già definito in progetti.

dello stesso ambito. Inoltre la scena è così compatibile con tutti gli applicativi all’interno del progetto REVERie, dunque sarà possibile scambiare e costruire descrizioni delle scene comuni. Dato che tale specifica non comprende tutti gli aspetti necessari alla descrizione delle proprietà dell’applicazione Palestra virtuale, si è deciso di specificare separatamente tutto ciò che non rientrasse nella descrizione della scena e non definibile tramite CML.

Si è scelto di utilizzare Xml49 come formalismo per la descrizione degli obiettivi e dei suoni. In primo luogo il framework utilizza già il Parser Xml per caricare la scena in formato Cml, inoltre l’Xml per la sua natura articolata e rigorosa, ben si presta alla descrizione consistente di un insieme sequenziale di informazioni, la cui tipologia è definita e ripetuta, ad esempio la struttura della descrizione degli obiettivi è la stessa per ogni oggetto. Il Parser utilizzato è il Microsoft® XML Core Services (MSXML) 4.0.

49 Descrizione formato Xml http://www.w3.org/XML/
Il Loader è concettualmente unitario, poiché la fase di caricamento degli scenari avviene nello stesso momento, caricando in modo sequenziale i file, tuttavia il Loader è composto in realtà da tre specifiche parti: SceneLoader (integrato nelloSceneManager), SoundLoader e ObbLoader, tale suddivisione rispetta le esigenze di avere uno strumento compatibile e comune, lo SceneLoader carica la scena tramite il formato Cml, standard definito e comune a tutti gli applicativi, il SoundLoader gestisce i suoni e sarà oggetto di modifiche o integrazioni da parte dei successivi applicativi, infine
l’ObbLoader contiene dettagli specifici alla struttura ad obiettivi di Palestra Virtuale, non è parte comune con gli altri applicativi.

Esempio scena Cml

Si pone come esempio la descrizione di una scena comprendente un piano e due oggetti, il piano è padre degli altri oggetti in questo modo spostando il piano, si pensi al pavimento di una stanza, si spostano di conseguenza tutti gli oggetti contenuti. Alcuni tag sono inutilizzati, sono mantenuti per rispettare la coerenza formale del CML.

```xml
<?xml version="1.0" encoding="iso-8859-1" ?>
<?xml-stylesheet type='text/xsd' href='Mondo.xsd'?>
<World>
  <Configuration>
    <FCServer Uri="" />
    <FPSSharedUsers value="1" />
    <EnableUsersInfo value="false" />
  </Configuration>
  <Part num="1" url="">
    <Avatar>
      <Geometry>
        <Location URL="" ModelResource="" />
        <Appearance URL="" />
      </Geometry>
    </Avatar>
    <Object Name="Pavimento" ID="0">
      <Geometry>
        <Location URL="" ModelResource="floor.3ds" />
        <Appearance URL="" />
        <Position X="0" Y="0" Z="0" />
        <Rotation X="0" Y="30" Z="0" />
        <Scale X="2" Y="1" Z="2" />
      </Geometry>
      <Behaviour />
    </Object>
    <Object Name="Oggetto1" ID="1">
      <Geometry>
        <Location URL="" ModelResource="" />
        <Appearance URL="" />
        <Position X="0" Y="0" Z="0" />
        <Rotation X="0" Y="30" Z="0" />
        <Scale X="2" Y="1" Z="2" />
      </Geometry>
      <Behaviour />
    </Object>
    <Object Name="Oggetto2" ID="2">
      <Geometry>
        <Location URL="" ModelResource="" />
        <Appearance URL="" />
        <Position X="0" Y="0" Z="0" />
        <Rotation X="0" Y="30" Z="0" />
        <Scale X="2" Y="1" Z="2" />
      </Geometry>
      <Behaviour />
    </Object>
  </Part>
</World>
```
5.8.2 Descrizione dei suoni

I suoni sono riprodotti tramite le funzioni del framework, tuttavia non vi è il binding automatico tra i suoni e gli oggetti che li riprodurranno a livello applicativo. L’associazione viene gestita dall’applicazione, mediante un riferimento che lega il suono all’oggetto. L’applicativo a questo punto si preoccuperà di gestire e aggiornare il suono ogni qual volta l’oggetto viene spostato, modificato od eliminato. L’associazione e la descrizione del suono stesso avvengono tramite Xml, l’editor permette di aggiungere nuovi suoni e modificare le proprietà.
Un esempio di suono legato ad un oggetto:

```xml
<Sound ObjID="3">
  <SoundName Location="pop.wav" Loop="No"/>
  <SoundVolume Value="1.00"/>
</Sound>
```

Un esempio di suono d'ambiente:

```xml
<SoundMusic>
  <AmbientSound AmbID="2">
    <SoundName Location="Dog.wav" Loop="No"/>
    <SoundVolume Value="0.80"/>
  </AmbientSound>
</SoundMusic>
```

I suoni d'ambiente richiedono un identificatore, non essendo legati ad un particolare oggetto già univoco per sua natura, sostanzialmente si comportano e vengono gestiti allo stesso modo dei suoni legati agli oggetti, la posizione in questo caso durante l’esecuzione nel player è fissa e assoluta.

5.8.3 Descrizione degli obiettivi

Gli obiettivi relativi all’applicazione palestra virtuale, sono acquisiti tramite descrizione in XML, attraverso l’editor è possibile modificare tali dati, come per i suoni gli obiettivi vengono legati ad un oggetto tramite un riferimento all’identificatore di un dato oggetto presente sulla scena, sarà l’applicazione in seguito a controllare le proprietà ogni qual volta che, si interagisce con un dato oggetto.

Segue una breve spiegazione della struttura.

```xml
<?xml version="1.0" encoding="iso-8859-1"?>
```
E' possibile inserire i valori iniziali della telecamera e dell'avatar, se non si specificano i valori della telecamera, viene assegnato un valore di default, supponendo che l'autore della scena l'abbia disegnata partendo dalla posizione centrale.

Se presente indica al player che deve caricare all'inizio l'avatar nella posizione specificata, è possibile in ogni momento aggiungere l'avatar anche se non caricato inizialmente.

All'interno della proprietà testo viene inserita la descrizione dello scenario.
Per ogni oggetto dotato di proprietà od obiettivi viene specificato aggiunto un nodo obiettivo, i nodi click e Poslist sono opzionali, infine un oggetto senza nodo riceve come valori di default: non spostabile, solido ed evento click con valore “niente”.

```xml
<Attributi Move="No" OnClick="Suona" OnAvatar="Raccogli"/>
</Attributi>
```

All’interno degli attributi viene specificato se è spostabile e gli eventi a seguito di interazione e collisione con avatar.

```xml
<Click NTimes=".." Descr="Premi per..">
E’ opzionale e specifica l’obiettivo di click.
</Click>
```

```xml
<PosList>
E’ opzionale e specifica la lista posizioni
```

All’interno del nodo Poslist è possibile specificare fino a cento posizioni da raggiungere e la descrizione associata.

```xml
<PosObb X=".." Y=".." Z=".." Range=".." Descr="..."/>
<PosObb X=".." Y=".." Z=".." Range=".." Descr="..."/>
</PosList>
```

L’ordine di completamento dipende dalla posizione, il primo PosObb sarà anche il primo da raggiungere.

```xml
<Percorso>
<Element ObjID=".." Descr="..."/>
</Element>
<Element ObjID=".." Descr="..."/>
</Percorso>
```

Il percorso viene definito, concettualmente nello stesso modo degli obiettivi di posizione, solo che come riferimento si ha l’ID, identificativo, dell’oggetto.
5.9 Gestione del log

Uno dei problemi che si riscontrano nella progettazione del log, è definire il livello informativo che si vuole presentare, una soluzione è quella di mostrare tutte le informazioni ed eventi, in questo caso non si corre il rischio di omettere del contenuto informativo, ma il risultato è quello di avere file di log costituito da liste enormi d'informazioni per lo più irrilevanti. La soluzione adottata è stata di inserire le informazioni rilevanti sul piano dello scenario e degli eventi distinguendole grazie ai colori. Tale soluzione non è sufficiente ad evitare di avere liste informative troppo grandi e ripetitive, è stato necessario introdurre dei filtri, in particolare per gli eventi di collisione; l'algoritmo che li gestisce controlla in modo continuo le
collisioni tra l’avatar e gli oggetti, questo comporta che se l’utente continua a rimanere contro un oggetto sul log si avrebbe una lista continua di eventi collisione memorizzati ogni frazione di secondo. Ci sono di conseguenza dei filtri che eliminano tutte le collisioni successive alla prima col medesimo oggetto e che avvengono in modo continuo, altri filtri tengono conto di collisioni cicliche tra alcuni oggetti, evento che capita, quando l’avatar è in una posizione che lo fa colloidere continuamente con due oggetti. Il Log, per come è stato progettato, è stato pensato per un’ispezione di tipo manuale, dunque il formato RTF ben si presta a questo scopo, come si è già accennato grazie alle possibilità di abbellimento e formattazione; in prospettiva futura il framework è predisposto ad una versione del log in formato XML, questa seconda soluzione è particolarmente adatta ad un’analisi di tipo automatico, in grado di fornire statistiche e formulare alcune deduzioni. Questa ipotesi, potrà essere messa in pratica, non appena sarà possibile definire un modello interpretativo significativo ed accurato.
6 Il protocollo valutativo

Lo scopo degli scenari creati è duplice: da un lato mostrare le diverse funzionalità del programma e offrire un riferimento al tutor per crearne di nuovi, ad esempio modificando contenuto e obiettivi, dall’altro fornire degli esempi che potessero essere testati da utenti con difficoltà cognitiva e relazionale.

A questo proposito ogni scenario ha un tema funzionale differente, il primo si tratta di un esercizio di riconoscimento sonoro, il secondo di ricerca di oggetti simili non vincolati da un percorso, il terzo propone semplici operazioni di movimento, e infine il quarto realizza un percorso.

Per tutti invece si è cercato di creare una descrizione motivante e simpatica. Particolare cura è stata data ai modelli affinché fossero in primo luogo attinenti allo scenario proposto e in secondo luogo piacevoli, sono stati usati a questo proposito delle paperette, un pupazzo di neve e altri modelli tutti con una grafica fantasiosa, quasi più da cartoon, che reale.
6.1 Gli scenari

Sono presentati gli scenari in ordine di creazione:

6.1.1 Scenario 1: La stanza degli strumenti

![Image](image.png)

Figura 6-1 Scenario1: Schermata iniziale, viene mostrata la descrizione dello scenario; gli oggetti della scena sono ben visibili.

Descrizione

“Premi il tasto suona, e fai attenzione a quale oggetto ha suonato, se non senti bene avvicinati agli strumenti, ma attento ogni tanto la mosca e il cane potrebbero disturbare, allora premi nessun oggetto!”
Scopo

Riconoscere gli oggetti che hanno suonato, senza farsi distrarre da eventuali suoni che non appartengono alla famiglia di oggetti presenti sulla scena. Sono disposti alcuni strumenti musicali: Piano, arpa e chitarra dotati di suono e altri oggetti come l’enciclopedia, il tavolo che non sono dotati di suoni. Sono inoltre memorizzati due suoni di ambiente suono della mosca e suono del cane, che servono a distrarre l’attenzione. In seguito alla pressione del tasto Suona, a caso verrà suonato uno degli oggetti, Piano, Arpa, Chitarra o uno dei suoni di ambiente mosca o cane, lo scopo dell’esercizio è riconoscere premendo sull’oggetto che ha suonato, nel caso del cane o della mosca è necessario premere il bottone Nessun Oggetto.
6.1.2 Scenario 2: E’ tempo di raccolta

![Scenario 2 Image]

Figura 6-2 Scenario2: L’utente è pronto per raccogliere il frutto, la descrizione provvede a ricordarglielo.

Descrizione

“E’ tempo di raccolta! Guarda che bei frutti nel campo del Signor Poldo, dai un’occhiata ai frutti sugli alberelli prendili (Mouse-Tasto sinistro), poi usa l’omino per prendere tutti gli attrezzi che lo sbadato Poldo ha lasciato in giro! Attento! Per andare nell’altra isola bisogna spostare prima i legni sulla strada (Mouse-Tasto Destro)”

Scopo

Interagire con gli oggetti assegnati, raccogliere tramite il mouse la frutta sugli alberi, dato che i frutti non sono raggiungibili dall’avatar;
raccogliere il frutto per terra con l’avatar o con il mouse, raggiungere l’altra isola, per fare ciò è necessario spostare i legni che impediscono l’accesso all’avatar, infine usare l’avatar per raccogliere gli oggetti lasciati in giro vicino al pozzo basta che l’avatar raggiunga gli oggetti.

Alcuni dettagli

Un frutto non è visibile, ma è nascosto parzialmente dall’albero è necessario muovere la visuale.

Nel lago è possibile cadere, l’avatar torna al punto di partenza.

6.1.3 Scenario 3: Aiuta le paperette

Figura 6-3 Scenario3: L’utente ha trovato una paperetta ed è pronto per spostarla.
Il protocollo valutativo

Descrizione

“Le paperette si sono perse sull’isola, riportale nella loro vasca al centro dell’isola, vicino a mamma papera (tasto destro per spostare)”

Scopo

Far spostare degli oggetti assegnati, le paperette in un determinato luogo. Le paperette sono state messe in posizione casuale sull’isola il luogo da raggiungere è lo stesso per tutte le paperette, la vasca al centro dell’isola. Le paperette non sono inizialmente visibili, bisogna cercarle.

Questo esempio vuole mostrare come poter far compiere semplici esercizi di spostamento, possa essere facilitato dalla presenza di uno scenario dalle caratteristiche fantasiose.
6.1.4 Scenario 4: Il Pinguino affamato

Figura 6-4 Scenario4: L’Avatar è in fase di caricamento delle animazioni, la scena è ben visibile.

Descrizione

“Il pinguino dal becco giallo Baldo è affamato, portagli il pesce, poi fai una visita a MR pupazzo di neve, infine torna alla casetta del cane! “

Scopo

Far compiere tramite l’avatar una serie di tappe prefissate da svolgere in sequenza. Il fatto di raccogliere il pesce da portare al pinguino, vuole dare un motivo per compiere tale tracciato. Il pesce rappresenta quindi la prima tappa da raggiungere e scompare nel momento in cui l’avatar lo raggiunge, la seconda tappa il pinguino
baldo, viene proposta mostrando altri pinguini che differiscono solo del colore del becco, quindi è necessario individuare quale sia il pinguino Baldo. Cercando con il cursore, se non individuato dal colore del becco, il pinguino Baldo a differenza degli altri ha associato il commento “Che fame…” . Infine le altre due tappe sono ben visibili, al raggiungimento di ogni tappa è stato associato un suono in modo da render chiaro l’avvenuto raggiungimento. Il piano della neve inclinato fa scivolare verso il basso l’avatar aumentando le difficoltà di movimento.

6.2 Richieste Hardware

L’applicativo è stato provato su più macchine, nei sistemi recenti non sono stati riscontrati problemi, mentre il livello di prestazioni in generale si abbassa su macchine meno potenti, l’incidenza non varia linearmente con la frequenza di clock del processore, si è rilevato che incide in minima parte rispetto alla scheda grafica. La scheda video, oltre ad offrire buone prestazioni in grafica tridimensionali necessita un buon supporto alle OpenGL, in alcuni casi è stato necessario installare i driver più recenti. Per dare un riferimento generale in un sistema dotato Atholon 700Mhz con Gforce Ti 4200 128 Mbyte, l’applicativo funziona egregiamente. Su un sistema Pentium2 200Mhz, Gforce 4Mbyte, l’applicativo funziona, ma il livello di prestazioni è talmente basso che di fatto gli scenari sono ineseguibili.

Per quanto riguarda il suono, le OpenAL sono supportate pienamente dalle schede Creative, e sono compatibili con le schede che supportano il DirectSound3D, i suoni vengono riprodotti anche senza tale supporto, ma il suono rimane a due dimensioni e indipendente dalla posizione. Per le schede sonore integrate nvidia è stato necessario installare driver appositi a supporto delle OpenAL e con alcune schede si è rilevato un abbassamento eccessivo del volume.
6.3 Modalità dei test

Una volta completati gli scenari, l’applicativo è stato installato presso il centro EsaGramma\(^{50}\). Gli utenti di Esagramma sono bambini e ragazzi con problemi psichici e mentali (autismo e insufficienza mentale), pazienti psichiatrici adulti, ragazzi e giovani con disagio sociale e familiare; il centro fornisce inoltre supporto alle famiglie. All’interno del centro sono presenti educatori e psicologi che tengono corsi individuali e di gruppo attraverso l’uso sia di strumenti musicali, sia multimediali.

E’ stato consigliato di eseguire gli scenari secondo un ordine prefissato: Scenario1, Scenario3, Scenari4, Scenario2.

L’ordine è stato scelto in base alla difficoltà di utilizzo dei controlli come primo fattore discriminante, mentre il secondo fattore considerato è stata la complessità logica degli scenari. I primi due, infatti, non prevedono l’uso dell’avatar; la stanza degli strumenti, il primo, inoltre, non avendo un obiettivo fisso e quindi avendo una durata temporale variabile, si presta anche come valido scenario per prendere pratica con l’interfaccia e i controlli.

Infine lo scenario4 risulta più semplice rispetto allo scenario2 perché non prevede l’utilizzo combinato di interazione tramite mouse e tastiera.

\(^{50}\) EsaGramma:Centro di formazione e terapia :Musica e nuove tecnologie per il disagio psichico e mentale, http://www.amicidellamusica.milano.it/stagione/navigli/artiste/esagramm.htm
6.4 Il protocollo valutativo

Al fine di poter valutare con maggiore precisione i risultati dei test è stato proposto un protocollo valutativo.

Ad ogni punto è stata associata una domanda esemplificativa e una valutazione, il protocollo è stato diviso in due sezioni: la prima riguarda la parte prettamente psicopedagogica, la seconda riguarda aspetti più tecnici, le due sezioni sono composte da dieci macro-argomenti contenenti una o più domande sul tema.

Viene riportato il protocollo da compilare, per ogni sessione, così come è stato consegnato, si è omessa l’intestazione riguardante la data e il nome del tutor, in aggiunta in seguito alle domande è stato posto un riquadro ove inserire annotazioni e commenti particolari.

6.4.1 Valutazione degli aspetti psicopedagogici

<table>
<thead>
<tr>
<th>1) Comprensione delle modalità di interazione</th>
<th>scarso</th>
<th>sufficiente</th>
<th>buono</th>
<th>ottimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopo una breve presentazione dell'ambiente il ragazzo è in grado di muoversi all'interno della scena?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2) La comprensione dell’obiettivo dell’esercizio</th>
<th>scarso</th>
<th>sufficiente</th>
<th>buono</th>
<th>ottimo</th>
</tr>
</thead>
</table>

Dopo avere letto l'obiettivo dell'esercizio, autonomamente o con il supporto del tutor, il ragazzo è in grado di muoversi in funzione del raggiungimento dell'obiettivo?

3) La modalità di interazione, i tempi di esplorazione e di interazione finalizzata

Come si valutano i tempi di esplorazione in rapporto ai tempi di interazione finalizzata?

4) Il ruolo della presenza del tutor

Come si valuta l'interazione con il tutor, in una sua funzione collaborativa (ad esempio nella possibilità di controllo della prospettiva, mentre il ragazzo interagisce in prima persona) o di stimolo?

Come si valuta l'interazione con il tutor, in una sua funzione assistiva, di sblocco di situazioni?

5) Risposta ad eventi inattesi, errati

Come si valuta la risposta a eventi inattesi, il verificarsi di errori, di comportamenti dell'interfaccia non previsti (es. aspetti sonori)?
6) Risposta al raggiungimento degli obiettivi parziali e complessivi

<table>
<thead>
<tr>
<th></th>
<th>inadeguata</th>
<th>sufficiente</th>
<th>buono</th>
<th>ottimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Come si valuta la risposta al raggiungimento di obiettivi parziali?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Come si valuta la risposta al raggiungimento dell’obiettivo complessivo?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4.2 Valutazione degli aspetti tecnici

7) Compreensione delle modalità di interazione

<table>
<thead>
<tr>
<th></th>
<th>scarso</th>
<th>sufficiente</th>
<th>buono</th>
<th>ottimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gli elementi accessori dell’interfaccia, quali l’inizio dell’esercizio, l’apertura di un nuovo scenario, la selezione delle opzioni, sono graditi?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sono utilizzati con semplicità?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) Utilizzo dell’avatar</td>
<td>scarso</td>
<td>sufficiente</td>
<td>buono</td>
<td>ottimo</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Le funzioni di spostamento dell’avatar sono gradite?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sono utilizzate con semplicità?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le animazioni dell’avatar sono gradite?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L’associazione del suono al movimento è gradito?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9) Controllo della prospettiva della scena</th>
<th>scarso</th>
<th>sufficiente</th>
<th>buono</th>
<th>ottimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le funzioni di controllo della prospettiva della scena sono gradite?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sono utilizzate con semplicità?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10) Presenza del suono ambientale</th>
<th>scarso</th>
<th>sufficiente</th>
<th>buono</th>
<th>ottimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>La presenza del suono ambientale, cioè dei suoni associati a particolari elementi della scena, è gradita?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L’interazione con gli elementi sonori della scena è semplice?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In particolare come viene valutato l’interazione con l’oggetto della scena incaricato di fornire spiegazioni sull’obiettivo dell’esercizio?</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 Analisi dei risultati

Diciotto sessioni, sono state impiegate per eseguire la fase di test, ad ognuna di esse ha partecipato un soggetto differente. In ogni sessione della durata di circa un’ora, gli scenari sono stati ripetuti due volte. L’esecuzione è stata effettuata su sistemi di ultima generazione e apparato sonoro di buon livello; l’applicativo è stato testato in condizioni ottimali. L’età dei partecipanti è variabile dai dieci ai quarantasei anni; la maggior parte si colloca nella fascia dai venti ai trent’anni, sono solo due gli utenti sopra i quarant’anni. Anche le condizioni di disabilità sono diverse, sia per la funzionalità coinvolta, sia per la gravità; alla sperimentazione hanno, infatti, partecipato due gruppi di controllo seguiti da due psicopedagogiste distinte; il primo gruppo, otto persone in totale, è seguito normalmente presso il centro Esagramma; nelle metodologie in uso presso il centro è previsto l’utilizzo di strumenti didattici multimediali, dunque è presente in questi persone una certa familiarità con lo strumento informatico. Il secondo gruppo, formato da dieci persone, invece presenta condizioni di disabilità più marcate e meno esperienza con gli strumenti informatici: in questo gruppo si sono riscontrate le maggiori difficoltà esecutive.

7.1 Considerazioni generali

Gli utenti hanno trovato interessante e stimolante l’applicativo, la possibilità di mettersi alla prova, di giocare e di provare uno strumento nuovo sono stati veicoli motivazionali. Gli scenari uno e tre sono stati considerati semplici dalla maggior parte degli utenti, mentre più difficile è stato il movimento dell’avatar presente negli
Analisi dei risultati

scenari due e quattro. I problemi da risolvere in generale non sono stati considerati difficili sul piano logico. Le psicopedagogiste che hanno seguito e supportato gli utenti hanno fatto notare che non ci sono stati allievi che hanno ottenuto prestazioni al di sotto delle aspettative, bensì alcuni hanno dimostrato risultati buoni nonostante la difficoltà dovuta alla propria condizione di disabilità. Sono comunque emersi, come era facilmente prevedibile, alcuni risultati generalmente negativi da parte di utenti in situazione di disabilità più grave e con età maggiore. L’età ha inciso nella poca dimestichezza con gli strumenti informatici, mezzo generalmente molto più familiare agli utenti giovani o che seguono già percorsi riabilitativi attraverso l’uso di strumenti multimediali. In particolare si evidenzia la sperimentazione molto critica dell’applicativo da parte di una signora di quarantasei anni con ritardo mentale grave: sono stati eseguiti solo gli scenari uno e tre, e non è stato possibile completare la sessione. I risultati della sessione evidenziano che sono state riscontrate difficoltà in tutti i punti sia pratici, sia logici e sia di comprensione degli obiettivi con la necessità di supporto costante da parte del tutor. In un test con una ragazza con ritardo mentale grave associato ad autismo, risultano difficoltà di comprensione dello scenario due e problemi generici nell’uso degli strumenti informatici, tuttavia si nota come la collaborazione e lo stimolo da parte del tutor risulta fondamentale in presenza di situazioni simili.

L’analisi dei log ha permesso di evidenziare miglioramenti in termini di tempo ed errori, che si evidenziano nel raffronto tra la prima e la seconda esecuzione. L’analisi degli eventi segnalati ha permesso di stabilire se l’utente ha utilizzato la strategia migliore e quali oggetti, non facenti parte degli obbiettivi hanno attirato la sua attenzione o gli sono stati di ostacolo al movimento.

Il log, dunque, è stato utilizzato come strumento valutativo da parte dei tutor, è stato gradito, e in alcuni casi è stato mostrato agli allievi come prova effettiva dei loro progressi ottenuti.
Analisi dei risultati

7.2 Analisi dei punti del protocollo

Sono presentati i risultati relativi ai singoli punti del protocollo, l’analisi è stata effettuata considerando le valutazioni globali ottenute in diciassette sessioni, viene esclusa la sessione del caso più critico, poiché avendo completato solo gli scenari uno e tre, la scheda risulta incompleta in alcuni suoi punti.

7.2.1 Valutazione degli aspetti psicopedagogici

1) Comprensione delle modalità di interazione

Dopo una breve presentazione dell'ambiente il ragazzo è in grado di muoversi all'interno della scena?

I risultati indicano che gli utenti nella maggior parte dei casi non hanno trovato impedimenti o barriere concettuali che impedissero loro di intraprendere le interazioni con la scena.
2) La comprensione dell'obiettivo dell'esercizio

Dopo aver letto l'obiettivo dell'esercizio, autonomamente o con il supporto del tutor, il ragazzo è in grado di muoversi in funzione del raggiungimento dell'obiettivo?

![Figura 7-2 Grafico 2: Comprensione dell'obiettivo dell'esercizio](image)

I risultati in linea con il precedente punto, mostrano che i due utenti che non hanno compreso gli obiettivi, si sono trovati in spaesati anche di fronte alla comprensione delle interazioni o viceversa, globalmente risulta che gli obiettivi sono stati ben capiti e le spiegazioni chiare.

3) La modalità di interazione, i tempi di esplorazione e di interazione finalizzata

Come si valutano i tempi di esplorazione in rapporto ai tempi di interazione finalizzata?
La maggior parte degli utenti che aveva compreso gli obiettivi, ha agito di conseguenza per raggiungere lo scopo finale. Si è riscontrato un generale interesse verso l’esplorazione, molti utenti spesso hanno tralasciato gli obiettivi momentaneamente per provare gli effetti dell’interazione sugli oggetti e i suoni associati, la possibilità di far “cadere” l’avatar ha suscitato spesso motivo di interesse nel verificarne le conseguenze.

4) Il ruolo della presenza del tutor

A) Come si valuta l’interazione con il tutor, in una sua funzione assistiva, di sblocco di situazioni?
B) Come si valuta l'interazione con il tutor, in una sua funzione collaborativa (ad esempio nella possibilità di controllo della prospettiva, mentre il ragazzo interagisce in prima persona) o di stimolo?

Il ruolo del tutor ben si è integrato ed è servito come supporto al superamento dei momenti di difficoltà e incitamento, anche nei due
casi ove gli utenti non avevano capito gli obiettivi, il supporto è stato apprezzato ed efficace, anche se in una sessione in misura minore. Alcuni ragazzi che hanno ottenuto i risultati migliori hanno richiesto di poter eseguire gli scenari autonomamente senza la presenza o il supporto del tutor.

5) Risposta ad eventi inattesi, errati

Come si valuta la risposta a eventi inattesi, il verificarsi di errori, di comportamenti dell’interfaccia non previsti (es. aspetti sonori)?

In generale gli utenti non hanno avuto problemi, anzi hanno gradito spesso effetti sonori non previsti; all’inizio il sentimento diffuso è stato lo stupore verso i suoni per poi abituarsi con il progredire degli scenari. E’ stato segnalato un caso particolare, l’utente si è spaventato a seguito dei suoni, ma lo stesso ha detto di gradirli molto e che per lui è naturale spaventarsi di fronte ai suoni, anche essendo a conoscenza della loro presenza.

6) Risposta al raggiungimento degli obiettivi parziali e complessivi

A) Come si valuta la risposta al raggiungimento di obiettivi parziali?
B) Come si valuta la risposta al raggiungimento dell’obiettivo complessivo?

La risposta in seguito al raggiungimento degli obiettivi è stata buona, la maggior parte degli utenti ha dimostrato di gradire di essere stato in grado di portare a termine gli obiettivi; in tre casi l’interesse è stato minore, in particolare in uno, si è mostrato totale disinteresse nell’obiettivo finale salvo nel raggiungimento di alcuni sotto obiettivi che lo hanno coinvolto in misura maggiore.
7.2.2 Valutazione degli aspetti tecnici

La valutazione degli aspetti tecnici è stata effettuata partendo dal presupposto di una totale autonomia pratica da parte dell’utente, senza interventi da parte del tutor ad esclusione di indicazioni e suggerimenti verbali; è stato dunque considerato come inadeguato o scarso quando è stato necessario affidare parte dei controlli al tutor. Tale valutazione è molto stringente e fornisce un buon banco di prova per aspetti molto delicati come la facilità d’uso degli strumenti, bisogna tenere in considerazione che in fase di progettazione si è sempre prevista la possibilità di affidare o delegare parte dei comandi al tutor in particolare quelli relativi alla telecamera o dei controlli più complessi.

7) Comprensione delle modalità di interazione

A) Gli elementi accessori dell'interfaccia, quali l'inizio dell'esercizio, l'apertura di un nuovo scenario, la selezione delle opzioni, sono graditi?

![Gradimento dell'interfaccia e delle modalità selezione opzioni.](image)

B) Sono utilizzati con semplicità?
Figura 7-10 Grafico 7B: Semplicità d’utilizzo dell’interfaccia e delle modalità selezione opzioni.

L’interfaccia è stata generalmente gradita e apprezzata; sono stati riscontrati tre casi in cui è stato necessario l’intervento totale da parte del tutor, un utente nonostante il gradimento ha mostrato difficoltà di utilizzo. Bisogna sottolineare che anche la selezione dello scenario è stata affidata agli utenti e non ha rilevato particolari difficoltà; tale aspetto è particolarmente positivo dato che non si era previsto che la selezione dello scenario fosse affidata a loro.

8) Utilizzo dell’avatar

Le funzioni di spostamento dell’avatar sono gradite?

Figura 7-11 Grafico 8A: Gradimento delle funzioni di spostamento dell’avatar
Analisi dei risultati

Sono utilizzate con semplicità?

Figura 7-12 grafico 8B: Semplicità delle funzioni di spostamento dell’avatar

Le animazioni dell’avatar sono gradite?

Figura 7-13 Grafico 8C: Gradimento delle animazioni dell’avatar.
L'associazione del suono al movimento è gradito?

Figura 7-14 Grafico 8D: Gradimento del suono associato al movimento dell’avatar.

La presenza dell’avatar, la possibilità di utilizzarlo, unita alle animazioni ed effetti sonori è stata molto gradita, se si esclude un caso dove l’effetto sonoro dei passi non è stato apprezzato, mentre le animazioni nello stesso, poco. Discorso a parte relativo ai controlli dell’avatar; otto utenti hanno dimostrato un buon livello di manualità nell’utilizzo delle frecce direzionali per muovere l’avatar, nove utenti hanno avuto bisogno in più occasioni di interventi momentanei da parte del tutor, è capitato che l’utente non riuscisse a proseguire incontrando ostacoli e infine un utente non è stato in grado di utilizzare l’avatar in modo autonomo.

9) Controllo della prospettiva della scena

Le funzioni di controllo della prospettiva della scena sono gradite?
Analisi dei risultati

Figura 7-15 Grafico 9A: Gradimento delle funzioni di prospettiva dell’avatar.

Sono utilizzate con semplicità?

Figura 7-16 Grafico 9B: Semplicità di utilizzo delle funzioni di prospettiva dell’avatar.

La prospettiva di scena è l’elemento che più ha comportato problemi in particolare durante il movimento dell’avatar. Il movimento della telecamera durante la fase di interazione con il mouse ha creato meno difficoltà; in questo caso la visuale è orientata parallelamente al piano e prevede solo movimenti lungo gli assi. In particolare la possibilità di ruotare la visuale in tutte le direzioni ha creato confusione e spesso i movimenti involontari della mano sul mouse hanno fatto spostare la visuale, tale situazione si accentua negli utenti con difficoltà motorie. Come si vede dai risultati ben nove utenti hanno delegato totalmente il controllo al tutor, sei sono riusciti ad utilizzarla seppure con qualche difficoltà e solo due con buoni
risultati. Anche il gradimento della funzione si pone agli stessi livelli, chi non è riuscito ad utilizzare la prospettiva, non ne ha gradito la presenza, in un caso nonostante le difficoltà di utilizzo si è apprezzato lo stesso la funzione.

10) Presenza del suono ambientale

A) La presenza del suono ambientale, cioè dei suoni associati a particolari elementi della scena, è gradita?

B) L'interazione con gli elementi sonori della scena è semplice?
C) In particolare come viene valutato l'interazione con l'oggetto della scena incaricato di fornire spiegazioni sull'obiettivo dell'esercizio?

![Grafico 10C: Gradimento dell'interazione con l'oggetto preposto alla spiegazione dell'esercizio.](image)

I suoni sono risultati un elemento molto gradito, tale da portare a volte l'utente a ricercare ulteriori elementi sonori all'interno della scena, a dimostrazione di come un ambiente ricco sul piano interattivo, possa motivare l'utente al di là degli obiettivi. L'interazione tramite mouse è risultata semplice ed efficace, solo in due casi è stato necessario l'intervento temporaneo da parte del tutor. La descrizione sonora, opzionale, associata al pannello dello scenario è stata gradita nella maggior parte dei casi.

Riepilogo
Figura 7-20 Grafico riassuntivo: Somma dei risultati delle singole domande.

Considerando tutti gli aspetti, la maggioranza dei punteggi si attesta su un livello buono od ottimo. La maggior parte dei voti meno positivi, si concentra in un punto locale di tipo tecnico o ha una distribuzione verticale dovuta ai casi critici. La concentrazione locale dipende dal controllo della prospettiva per i voti “scarso” e dal controllo dell’avatar per i voti “sufficienti”. Due, tre utenti hanno riportato complessivamente valutazioni negative nella maggior parte dei quesiti, causa condizione di disabilità particolarmente grave. Tali risultati essendo abbastanza omogenei permettono di stabilire in che direzione muoversi per migliorare l’applicativo.

Il controllo della prospettiva risulta il principale nodo da sciogliere, la soluzione immediata è permettere di bloccare la visuale tramite comando da tastiera, ed eventualmente limitare il grado di movimento dello sguardo, in prospettiva futura si potrebbe “legare” la telecamera in modo che segua i movimenti dell’avatar in automatico. Il controllo dell’avatar ha creato qualche difficoltà, ma sono state quasi sempre risolte con momentanei interventi del tutor; va tenuto in considerazione, inoltre, che per tutti gli utenti coinvolti dal test si trattava della prima interazione con l’applicativo. L’utilizzo di una periferica, dotata di sensori digitali a pressione (tappetini, dance-mat), potrebbe essere utile a facilitare il controllo dell’avatar, proponendola ad utenti senza difficoltà motorie. Invece la possibilità di spostare l’avatar in automatico, indicando il luogo da raggiungere,
è una soluzione che semplifica, ma non sembra adeguata in quanto si perderebbe parte dello scopo del programma, la navigazione e il superamento degli ostacoli.
8 Conclusioni e sviluppi futuri

Questo lavoro che si colloca all’interno del progetto più ampio REVERie, ha realizzato un prototipo di applicativo che permette ad utenti, in particolare giovani o bambini con disagio cognitivo, di eseguire esercizi visuo-spaziali. L’ambiente proposto è: tridimensionale, la scena è esplorabile e osservabile liberamente in tutte le direzioni; interattivo sono presenti più eventi e modalità di interazione; sonoro, attraverso la riproduzione di suoni tridimensionali localizzati nello spazio. Lo scopo è motivare e stimolare l’utente affinché partecipi attivamente al percorso riabilitativo. L’applicativo è anche un valido strumento per il tutor, è presente un file di log formattato, di supporto per la valutazione delle sessioni, leggibile e completo. L’ editor permette di arricchire gli scenari presenti, e costruirne di nuovi secondo le esigenze dell’utente. A questo proposito è stata data particolare enfasi alle dinamiche attentive, logiche, mnemoniche e di pianificazione; sono stati proposti esempi che mettono in luce come, attraverso la creazione di scenari, sia possibile verificare e stimolare i processi cognitivi.

La realizzazione degli aspetti innovativi citati è stata ottenuta integrando e sviluppando il framework, che offre allo sviluppatore: astrazione della grafica e dei suoni, modularità, possibilità di espansione in uno dei suoi componenti e di usare una descrizione formale per le scene, comune a progetti dello stesso ambito.

I test effettuati, eseguendo quattro scenari realizzati d’esempio, presso il centro Esagramma hanno fornito risultati positivi e di gradimento a supporto delle ipotesi fatte e del lavoro svolto, l’applicativo inoltre risulta funzionale nell’uso collaborativo tra tutor e utente; sono emersi alcuni punti che possono essere oggetto di
miglioramento al fine di rendere l’interazione totalmente autonoma, quale una migliore gestione della prospettiva di scena.

8.1 Evoluzioni e spunti di futura ricerca

Creazione di una libreria di scenari

L’idea è quella di fornire un pacchetto di scenari, divisi per tipologia, aspetti logici, attentivi, mnemonici e visuo-spaziali. Fornendo per ogni scenario più versioni, incrementando il livello di difficoltà, il numero di oggetti, e le opzioni disponibili. In alternativa si potrebbe proporre un unico vero e proprio percorso formativo, che tiene conto di esercizi sempre più complessi, ma di natura varia ed articolata.

Aggiunta di modelli, suoni e personaggi

Sono presenti circa cinquanta modelli 3dstudio usati per la creazione degli scenari a corredo, in aggiunta ad alcuni suoni e un personaggio. Sono in fase di creazione nuovi personaggi e modelli nell’ambito del progetto REVERie-Storytelling compatibili con il presente lavoro, infine è auspicabile la creazione di una vera e propria libreria di modelli e suoni, in modo tale che tutti i progetti nell’ambito REVERie possano il più possibile rispecchiare le esigenze degli utenti e nello stesso tempo fornire contenuti variabili.

Controllo dello stato emotivo

Nonostante non si siano riscontrati nei test, particolari casi di reazioni emotive incontrollate, potrebbe essere interessante integrare nel player la possibilità, tramite sensori appositi, di monitorare lo stato emotivo, ad esempio i battiti cardiaci. Tale soluzione permetterebbe
di integrare il log fornendo statistiche sull’andamento dello stato emotivo in funzione degli avvenimenti durante le sessioni di lavoro.

Sviluppi del framework

Il framework, benché già pienamente utilizzabile è ancora in fase di sviluppo; la sua struttura modulare facilita l’inserimento di eventuali aggiornamenti, anche nell’applicativo *palestra virtuale*, in questo senso sono delineate alcuni strade dove si potrebbe procedere: miglioramento della gestione delle luci, possibilità di modificare le texture a runtime e migliore gestione delle animazioni.

Architettura di rete

E’ previsto nell’ambito *REVERie-Gioco di Ruolo*, di supportare la modalità cooperativa tramite architettura multi-utente e di rete, in questo senso si potrebbe creare una versione dell’applicativo *Palestra Virtuale* che permetta a più utenti di interagire ed eseguire i medesimi esercizi contemporaneamente nello stesso ambiente, al fine di valutare i differenti approcci, o ancor meglio poter effettuare strategie collaborative atte al raggiungimento del medesimo scopo.
9 Bibliografia e Sitografia

9.1 Bibliografia per argomento

Aggiornamento Marzo 2005

9.1.1 Riabilitazione delle funzioni attentive e cognitive generali

1) M. Zettin, R. Rago - *Conseguenze neuropsicologiche e comportamentali* - Bollati Boringhieri, 1995

2) A. Mazzucchi - *I disturbi attentivi e la loro riabilitazione* - La riabilitazione Neuropsicologica, Masson, 1999

3) A. Maravita, A. Mazzocchi – *I disturbi di memoria e la loro riabilitazione* - La riabilitazione Neuropsicologica, Masson, 1999

5) G. NorCross, M. Hedges - *The face of 2010 A Delphi poll on the future of psicotherapy* – Council for the national register of health service providing psychology, 2002

8) M. P. Radabaugh - *Study on the Financing of Assistive Technology Devices of Services for Individuals with Disabilities* - A report to the president and the congress of the United State, National Council on Disability, Marzo 1993

9) W. R. Bion - *Apprendere dall'esperienza* - Armando, 1972

9.1.2 Ambienti virtuali e definizioni

13) S. Bryron - *Approaches to a successful design and implementation of VR application* - Virtual Reality Applications - Academic Press Ltd, 1995

15) B. Steven K. Feiner - *Augmented Reality: A New Way of Seeing* - Scientific American, April 2002

19) M. Alcaniz, J. A. Lozano, B. Rey - *Technological Background About VR* - Internet and Virtual Reality as Assessment and Rehabilitation Tools for Clinical Psychology and Neuroscience, Amsterdam, IOS Press, 2004

9.1.3 Ambienti virtuali a supporto della riabilitazione

26) F. Morganti - Virtual interaction in cognitive neuropsychology - Internet and Virtual Reality as Assessment and Rehabilitation Tools for Clinical Psychology and Neuroscience, Amsterdam, IOS Press, 2004

27) F. Mantovani - VR Learning: Potential and Challenges for the Use of 3D Environments in Education and Training - Internet and Virtual Reality as Assessment and Rehabilitation Tools for Clinical Psychology and Neuroscience - Amsterdam, IOS Press, 2004

28) G. Riva, C. Botella - The future of Cybertherapy Improved options with advanced Technologies - Internet and Virtual Reality as Assessment and Rehabilitation Tools for Clinical Psychology and Neuroscience - Amsterdam, IOS Press, 2004

29) G. Riva, F. Mantovani, A. Gaggioli - Presence and rehabilitation: toward second generation virtual reality applications in neuropsychology - Journal of NeuroEngineering and Rehabilitation 2004

31) V. Laky, C. S. Lányi - Using virtual reality in psychology (Virtual worlds in treating agoraphobia and acrophobia) – AAATE Conference paper, 2003

34) A. Rizzo, D. Klimchuk, R. Mitura - *The Virtual Classroom: A Virtual Environment for the Assessment of Attention Processes in Children with Attention Deficit Hyperactivity Disorder* - University of Southern California, Digital Media Works, 1999

40) N. Foreman, P. Wilson, D. Stanton - *VR and spatial Awareness in disabled Children* - Communicatin of ACM Vol 40, Luglio 1997

41) D. J. Brown, S. Kerr, J. R. Wilson - *Virtual environment in special need Education* - Communicatin of ACM Vol 40, Luglio 1997

9.2 Sitografia

Aggiornamento Marzo 2005

47) Organizzazione mondiale sanità, www.who.int/en/

48) Università della California, http://imsc.usc.edu/

49) OpenAL portale che fornisce informazioni generali, link alle SDK, ai Driver, ai Tutorial, www.OpenAl.org

52) Servizio di documentazione sul software didattico (SD²), http://sd2.itd.ge.cnr.it/

54) HANDImatica 2004 Mostra-Convegno Nazionale per l’integrazione del disabile, Tecnologie avanzate, informatica e telematica, per favorire l’integrazione delle persone disabili http://www.handimatica.it/

56) Descrizione formato Xml, http://www.w3.org/XML/

58) Portale sulle OpenGI, http://www.opengl.org/

59) Documenti e informazioni riguardo VRML http://www.vrmlsite.com/

60) Telemedicina portale informativo http://www.telemed.org/
61) Risorse e materiale sulla CyberTherapy
 http://www.cybertherapy.info/

62) Rassegna e collegamenti di motori grafici, per tipologia e funzioni offerte http://www.devmaster.net/engines
Ringraziamenti

Ai professori per la loro cordialità e per aver permesso questo lavoro: Licia Sbattella, Antonio Bianchi e Thimoty Barbieri.

Ai colleghi del progetto REVERie: Marco Riboldi, Alessandro Vitali e Michele Sassi.

Alle dottoresse Chiara Redaelli ed Elena Della Rocca per la loro disponibilità e professionalità.

Al centro Esagramma e a tutti i partecipanti alle sessioni di test.